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Chapter 8. Dynamics Il: Motion in a Plane

IN THIS CHAPTER, you will learn to solve problems
about motion Iin two dimensions.
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Chapter 8 Preview

Are Newton’s laws different in two dimensions?

No. Newton’s laws are vector equations, Force of changing speed
and they work equally well in two and v
three dimensions. For motion in a plane, , T
we’ll focus on how a force tangent to a /\ﬁ
particle’s trajectory changes its speed, ;

while a force perpendicular to the Force of changing direction
trajectory changes the particle’s direction.

(¢ LOOKING BACK Chapter 4 Kinematics of
projectile and circular motion
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Chapter 8 Preview

How do we analyze projectile-like motion?

For linear motion, one component of the
acceleration was always zero. Motion in a
plane generally has acceleration along two
axes. If the accelerations are independent,
we can use x- and y-coordinates and we will
find motions analogous to the projectile

motion we studied in Chapter 4.
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Projectile motion with drag

45°
30°
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Chapter 8 Preview

How do we analyze circular motion?

Circular motion must have a force component
toward the center of the circle to create

the centripetal acceleration. In this case

the acceleration components are radial

and, perhaps, tangential. We’'ll use a different
coordinate system, rtz coordinates, to study
the dynamics of circular motion

Slide 8-5
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Chapter 8 Preview

Does this analysis apply to orbits?

Yes, it does. The circular orbit of a satellite
or planet is motion in which the force of
gravity is creating the inward centripetal
acceleration. You'll see that an orbiting
projectile is in free fall.

{{ LOOKING BACK Section 6.3 Gravity
and weight

Slide 8-6
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Chapter 8 Preview

Why doesn’t the water fall out of the bucket?
How can you swing a bucket of water over
your head without the water falling out?
Why doesn’t a car going around a loop-the-
loop fall off at the top? Circular motion is
not always intuitive, but you'll strengthen
your ability to use Newtonian reasoning by
thinking about some of these problems.

Slide 8-7
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Chapter 8 Preview

Why is planar motion important?

By starting with linear motion, we were able to develop the ideas
and tools of Newtonian mechanics with minimal distractions. But
planes and rockets move in a plane. Satellites and electrons orbit
in a plane. The points on a rotating hard drive move in a plane.

In fact, much of this chapter is a prelude to Chapter 12, where
we will study rotational motion. This chapter gives you the tools
you need to analyze more complex—and more realistic—forms

of motion.

Slide 8-8
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Chapter 8 Reading Questions
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Reading Question 8.1

When drag Is included, the launch angle of a
projectile which maximizes the range is

A. Greater than 45°.
B. Equal to 45°.
C. Less than 45°
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Reading Question 8.1

When drag Is included, the launch angle of a
projectile which maximizes the range is

A. Greater than 45°.
B. Equal to 45°.
/' C. Less than 45°
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Reading Question 8.2

Circular motion is best analyzed in a coordinate
system with

A. Xx-and y-axes.
B. Xx-, V-, and z-axes.
C. Xx-and z-axes.
D. r-, t-, and z-axes.
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Reading Question 8.2

Circular motion is best analyzed in a coordinate

system with
A. Xx-and y-axes.
B. Xx-, V-, and z-axes.

C.

v D.

X- and z-axes.

r-, t-, and z-axes.
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Reading Question 8.3

This chapter studies

Uniform circular motion.
Nonuniform circular motion.
Orbital motion.

Both a and b.

All of a, b, and c.

moowpy
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Reading Question 8.3

This chapter studies

Uniform circular motion.
Nonuniform circular motion.
Orbital motion.

Both a and b.

V'E. Allofa,b,andc.

o0 w»
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Reading Question 8.4

For uniform circular motion, the net force

Points toward the center of the circle.
Points toward the outside of the circle.
s tangent to the circle.

S Zero.

o0 w >
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Reading Question 8.4

For uniform circular motion, the net force

' A. Points toward the center of the circle.
B. Points toward the outside of the circle.
C. Istangent to the circle.
D. Is zero.
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Reading Question 8.5

The centrifugal force

s a fictitious force.

Points toward the center of the circle.
s provided by static friction.

All of the above.

B and C, but not A.

moowpy
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Reading Question 8.5

The centrifugal force

v A. Is afictitious force.
B. Points toward the center of the circle.
C. Is provided by static friction.
D. All of the above.
E. B andC, but notA.
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Chapter 8 Content, Examples, and
QuickCheck Questions
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Dynamics in Two Dimensions

= Newton’s second law determines an object’s
acceleration; it makes no distinction between linear
motion and two-dimensional motion in a plane.

= We began with motion along a line, in order to focus on
the essential physics, but now we turn our attention to
the motion of projectiles, satellites, and other objects that
move in two dimensions.

= We'll continue to follow Problem-Solving Strategy 6.1,
which is well worth a review, but we’ll find that we need to
think carefully about the appropriate coordinate system
for each problem.

Slide 8-21
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Dynamics in Two Dimensions

Newtonian mechanics

MoDEL Model the object as a particle. Make other simplifications depending on
what kinds of forces are acting.

visuALIZE Draw a pictorial representation.

Show important points in the motion with a sketch, establish a coordinate
system, define symbols, and identify what the problem is trying to find.

Use a motion diagram to determine the object’s acceleration vector a. The
acceleration is zero for an object in equilibrium.

Identify all forces acting on the object at this instant and show them on a free-
body diagram.

It’s OK to go back and forth between these steps as you visualize the situation.

Slide 8-22
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Dynamics in Two Dimensions

soLve The mathematical representation is based on Newton’s second law:
Fou= > F,=ma
The forces are “read” directly from the free-body diagram. Depending on the

problem, either

Solve for the acceleration, then use kinematics to find velocities and positions; or
Use kinematics to determine the acceleration, then solve for unknown forces.

Asskess Check that your result has correct units and significant figures, is reasonable,
and answers the question. )
Exercise 23
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Example 8.1 Rocketing in the Wind

© 2017 Pearson Education, Inc.

EXAMPLE 8.1 | Rocketing in the wind

A small rocket for gathering weather data has a mass of 30 kg
and generates 1500 N of thrust. On a windy day, the wind exerts a
20 N horizontal force on the rocket. If the rocket is launched
straight up, what is the shape of its trajectory, and by how much
has it been deflected sideways when it reaches a height of 1.0 km?
Because the rocket goes much higher than this, assume there’s no
significant mass loss during the first 1.0 km of flight.
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Example 8.1 Rocketing in the Wind

EXAMPLE 8.1 | Rocketing in the wind

MODEL Model the rocket as a particle. We need to find the function
y(x) describing the curve the rocket follows. Because rockets have
aerodynamic shapes, we’ll assume no vertical air resistance.

Slide 8-25
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Example 8.1 Rocketing in the Wind

EXAMPLE 8.1 ‘ Rocketing in the wind

VISUALIZE FIGURE 8.1 shows a pictorial representation. We’ve
chosen a coordinate system with a vertical y-axis. Three forces act
on the rocket: two vertical and one horizontal.

y
Known
x=y=0m
Vi Hroh Vi = viy =0m/s
Al
>~ y; = 1000 m
l =30k
Deflection m= g
Fthrust = 1500 N
Fyina=20N
0- Find
— — X X
0 X

Slide 8-26
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Example 8.1 Rocketing in the Wind

EXAMPLE 8.1 ‘ Rocketing in the wind

SOLVE In this problem, the vertical and horizontal forces are
independent of each other. Newton’s second law is

. (Fncl)x _ Fwind

a,= =
m m
. (Fncl)y . Flhrusl o mg
a},\ —— —
m m
Y
Known
x=y=0m
Yt 7t Vie = Viy = 0O m/s
/AR
Y y; = 1000 m
l =30k
Deflection m= g
Fthrust = 1500 N
Fyina=20N
0- Find
— — X X
0 X
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© 2017 Pearson Education, Inc.



Example 8.1 Rocketing in the Wind

YT

EXAMPLE 8.1 ‘ Rocketing in the wind

soLVE The primary difference from the linear-motion problems
you've been solving is that the rocket accelerates along both axes.
However, both accelerations are constant, so we can use kinematics
to find

F, in 2
a, (A1)? = =2 (Ar)?

2m

Fthrusl —mg (Ar)g

2m

where we used the fact that all initial positions and velocities are
zero. From the x-equation, (At)? = 2mx/F .

Known

x=y=0m
Vir = ¥y = 0 m/s
v = 1000 m

m = 30 kg
Fie = 1500 N
Foina=20N

w

Find

© 2017 Pearson Education, Inc.

Xf
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Example 8.1 Rocketing in the Wind

EXAMPLE 8.1 ‘ Rocketing in the wind

YT

i=|(———
(Fmrusl —mg

From the data provided, we can calculate a deflection of 17 m at a
height of 1000 m.

sOLVE Substituting this into the y-equation, we find

}"(«‘f) _ (Flhrusl —mg )X

F wind

This is the equation of the rocket’s trajectory. It is a linear equation.
Somewhat surprisingly, given that the rocket has both vertical and
horizontal accelerations, its trajectory is a straight line. We can
rearrange this result to find the deflection at height y:

F wind
y

Known

x=y=0m
Vir = ¥y = 0 m/s
v = 1000 m

m = 30 kg
Fie = 1500 N
Foina=20N

w

Find
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Xf
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Example 8.1 Rocketing in the Wind

EXAMPLE 8.1 ‘ Rocketing in the wind

ASSESS The solution depended on the fact that the time parameter
At is the same for both components of the motion.

y
Known
x=y=0m
Vi Hroh Vi = viy =0m/s
Al
>~ y; = 1000 m
l =30k
Deflection m= g
Fthrust = 1500 N
Fyina=20N
0- Find
— — X X
0 X
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Projectile Motion: Review

= |n the absence of air The ball’s trajectory
. . . .+ between bounces is
resistance, a prOJectIIe ,_ ”.u a parabola.
moves under the influence § »

of only gravity.

= |f we choose a coordinate
system with a vertical
y-axis, then A
Fg = —mg]

= Consequently, from Newton’s second law, the
acceleration is (Fg),

a =(
. m

(FG)y
a. = =

© 2017 Pearson Education, Inc. m
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Projectile Motion: Review

= Consider a projectile with
initial speed v,, and a
launch angle of § above
the horizontal.

= |n Chapter 4 we found that
the distance it travels before
It returns to the same
elevation from which it was
launched (the range) is

Trajectories of a projectile launched at
different angles with a speed of 99 m/s.

y (m) Launch angles of 6 and
500 - 75° 90 —li) give the same range.
400 -

300 is achieved at 45°.
200 A ’

00 s\
0 I 1 | 1 I X (m)
O\ 200 400 600 800 1000

vo =99 m/s

v~ sin(20)

range =

8

= The maximum range occurs for 6 = 45°.
= All of these results neglect the effect of air resistance.

© 2017 Pearson Education, Inc.
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Projectile Motion

= The acceleration of a typical projectile subject to drag
force from the air Is:

pCA
e = ="V R
a, = —8— p;: v, vx2 + vy2
= The components of y (m)
acceleration are not 6
Independent of each other. |
: Maximum range
= These equations can 44 is at 30°.
only be solved numerically. kY
= The figure shows the 2-
numerical solution for ;
a 5-g plastic ball. 0+ * (m)

Slide 8-33
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Uniform Circular Motion

= The kinematics of uniform circular motion were
Introduced in Sections 4.4-4.5, and a review is highly
recommended.

= Now we’re ready to study dynamics—how forces cause
circular motion.

= The particle’s velocity is tangent to the circle, and its
acceleration—a centripetal acceleration—points toward
the center.

= |f the particle has angular velocity v and speed v = wr,
Its centripetal acceleration is

1/’2

. 2 .
a = |—, toward center of circle | = (w’r, toward center of circle)
-

Slide 8-34
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Uniform Circular Motion

When describing circular
motion, it iIs convenient to
define a moving rtz-coordinate
system.

The origin moves along with a
certain particle moving in a
circular path.

The r-axis (radial) points from
the particle toward the center of
the circle.

The t-axis (tangential) Is
tangent to the circle, pointing Iin
the ccw direction.

The z-axis Is perpendicular to
the plane of motion.

© 2017 Pearson Education, Inc.

Velocity has only a tangential component.

Z-axis is out
of the page

Acceleration has only a radial component.

»
s
u

r :

Circle seen edge-on

Z

N

._

t-axis is into
the page
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Uniform Circular Motion

= A particle in uniform circular TR MR WY pom——
motion with angular velocity w r
has velocity v = wr, in the
tangential direction.

= The acceleration of uniform

circular motion points to the zaxis is ot
. ® of the page
center of the circle. .
= The rtz-components of v
e o

and a are
;2

vV, = O a, — — = a)zr Acceleration has only a radial component.
r g

v, = wr a=~0 %

vz — 0 az — O / f-axis 1s into

Circle seen edge-on the page
Slide 8-36
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QuickCheck 8.1

The diagram shows three ! 2

points of a motion diagram. T~ 3
The particle changes direction "
with no change of speed. What

IS the acceleration at point 2?

ol

Slide 8-37
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QuickCheck 8.1

The diagram shows three 1 2
points of a motion diagram. '_\3
The particle changes direction .
with no change of speed. What Acceleration of
IS the acceleration at point 27 changing direction

S \'.j'l_;:f 6

A B C. D E

Slide 8-38
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QuickCheck 8.2

A toy car moves around a circular track at constant
speed. It suddenly doubles its speed—a change of a
factor of 2. As a result, the centripetal acceleration
changes by a factor of

1/4.

1/2.

No change since the radius doesn’t change.
2.

4.

moowp
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QuickCheck 8.2

A toy car moves around a circular track at constant
speed. It suddenly doubles its speed—a change of a
factor of 2. As a result, the centripetal acceleration
changes by a factor of

1/4.
1/2.

No change since the radius doesn’t change.
2.

v'E. 4

o0
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Dynamics of Uniform Circular Motion

= An object in uniform circular motion is not traveling at a
constant velocity in a straight line.

Consequently, the particle must have a net force acting
on it .

—
F... = ma = |—, toward center of circle
r

Without such a force,
the object would move
off in a straight line
tangent to the circle.
The car would end

up in the ditch!

On banked curves, the normal force of
the road assists in providing the
centripetal acceleration of the turnsjige s-41
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Dynamics of Uniform Circular Motion

= The ﬁgure shows a With no force, the particle would continue

. . . . ~ =
moving in the direction of v.

particle in uniform circular
motion.

= The net force must point in
the radial direction, toward
the center of the circle.

= This centripetal force is
not a new force; it must be

t

zZ-axis 18 out

_ o 45 of the page
provided by familiar
forces.
2
(Fnet)r - EFI’ — ma, = Hl_v_— = mwzr

r
(Fnet)t: ZFz:maz: 0
(Fro). = EF =ma, =0

Slide 8-42
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QuickCheck 8.3

An ice hockey puck is tied by a string to

a stake in the ice. The puck is then

swung in a circle. What force or forces m
does the puck feel?

A new force: the centripetal force.

A new force: the centrifugal force.

One or more of our familiar forces pushing outward.
One or more of our familiar forces pulling inward.

| have no clue.

mooOwp
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QuickCheck 8.3

An ice hockey puck is tied by a string to

a stake in the ice. The puck is then

swung in a circle. What force or forces m
does the puck feel?

A. Anew force: the centripetal force.

B. Anew force: the centrifugal force.

C. One or more of our familiar forces pushing outward.
‘/D. One or more of our familiar forces pulling inward.

E. | have no clue.

The rules about what is or is not a force haven’t changed.

1. Force must be exerted at a point of contact (except for gravity).

2. Force must have an identifiable agent doing the pushing or pulling.

3. The net force must point in the direction of acceleration (Newton’s second law).

Slide 8-44
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QuickCheck 8.4

An ice hockey puck is tied by a
string to a stake in the ice. The puck
IS then swung in a circle. What force
IS producing the centripetal
acceleration of the puck?

A. Gravity

B. Airresistance

C.  Friction

D. Normal force

E. Tension in the string

© 2017 Pearson Education, Inc.
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QuickCheck 8.4

An ice hockey puck is tied by a
string to a stake in the ice. The puck
IS then swung in a circle. What force
IS producing the centripetal
acceleration of the puck?

A. Gravity
B. Airresistance
C.  Friction
D. Normal force
¢/E. Tension in the string
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Example 8.3 Turning the Corner |

EXAMPLE 8.3 | Turning the corner I

What is the maximum speed with which a 1500 kg car can make a
left turn around a curve of radius 50 m on a level (unbanked) road
without sliding?

MODEL The car doesn’t complete a full circle, but it is in uniform
circular motion for a quarter of a circle while turning. We can model
the car as a particle subject to a central force. Assume that rolling
friction is negligible.

Slide 8-47
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Example 8.3 Turning the Corner |

EXAMPLE 8.3 Turning the corner |

VISUALIZE

= The second figure below shows the top view of a tire as it turns a
corner.

= The force that prevents the tire from sliding across a surface Is static
friction.

= Static friction pushes sideways on the tire, perpendicular to the velocity,
since the car is not speeding up or slowing down.

= The free-body diagram, drawn from behind the car, shows the static
friction pointing toward the center of the circle.

<l

Known N Top view
m = 1500 kg ¥ ot tire
r=>50m \ .
ot s Rear view
Vmax Top view |f I'his force prevents -

the tire from
slipping sideways.

of car

Slide 8-48
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Example 8.3 Turning the Corner |

EXAMPLE 8.3 | Turning the corner I

SOLVE The maximum turning speed is reached when the static
friction force reaches its maximum f; .., = p . If the car enters the
curve at a speed higher than the maximum, static friction will not
be large enough to provide the necessary centripetal acceleration
and the car will slide.

The static friction force points in the positive r-direction, so its

v
Known N Top view
m = 1500 kg i YA\ of tire
r=50m \“\\\‘
ps=1.0
Find s .
oo Rear view
Vi Top view | This force prevents of car
of car the tire from

© 2017 Pearson Education, Inc.

radial component is simply the magnitude of the vector: (f;), = f..
Newton’s second law in the rfz-coordinate system is

2
mv

AT

EF:=n—mg=0

slipping sideways.
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Example 8.3 Turni

EXAMPLE 8.3 | Turning the corner I

ng the Corner |

v
Known N Top view
m = 1500 kg v of tire
r=50m .\\t .
Find 1Y e
. R Rear view
Vmax Top view |) ['his force prevents ofcar

of car

© 2017 Pearson Education, Inc.

the tire from
slipping sideways.
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Example 8.3 Turning the Corner |

Known

m = 1500 kg
r=>50m
M= 1.0
Find

1%

of car

© 2017 Pearson Education, Inc.

EXAMPLE 8.3 ‘ Turning the corner I

SOLVE At that point,

1, N
VIT'I«'.[X = " = MS rg

m

= V/(1.0)(50 m)(9.80 m/s?) = 22 m/s

where the coefficient of static friction was taken from Table 6.1.

max Top view [}

<l

Top view

‘\\\\\. tire

<l

Rear view
of car

This force prevents
the tire from
slipping sideways.
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Example 8.3 Turning the Corner |

EXAMPLE 8.3 | Turning the corner I

ASSESS 22 m/s = 45 mph, a reasonable answer for how fast
a car can take an unbanked curve. Notice that the car’s mass
canceled out and that the final equation for v,,,, 1S quite simple.

This is another example of why it pays to work algebraically until
the very end.

v
Known N Top view
m = 1500 kg i YA\ of tire
ps=1.0
Find '
oo Rear view
Vmax Top view |} This force prevents e

the tire from
slipping sideways.

of car

Slide 8-52
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Banked Curves

= Real highway curves are banked by being tilted up at the
outside edge of the curve.

= The radial component of the normal force can provide
centripetal acceleration needed to turn the car.

= For a curve of radius r banked at an angle 6, the exact
speed at which a car must take the curve without

assistance from friction is v, = Vrg tan#.

a
=
Q
=
=)
S

Road
r="70m surface
9 = 15° Y /-
-0

Top view

r -~

The r-axis oiﬂts -
7z p F F
r %qy > toward the center sk G
i

: of the circle.
Rear view __\6 Slide 8-53
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Banked Curves

= Consider a car going around a banked curve at a speed
slower than v, = Vrg tané.

= |n this case, static friction must prevent the car from
slipping down the hill.

Speed v < v
<

Road surface

—

i/

-
-

=1

Static friction must point uphill:
Without a static friction force up the
slope, a slow-moving car would slide
down the incline!

Slide 8-54

© 2017 Pearson Education, Inc.



Banked Curves

= Consider a car going around a banked curve at a speed
faster than v, = Vrg tané.

= |n this case, static friction must prevent the car from
slipping up the hill.

Speed v > v,

Road surface

Static friction must point downhill:
A faster speed requires a larger net
force toward the center. The radial
component of static friction adds to
n, to allow the car to make the turn.

Slide 8-55
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QuickCheck 8.5

A car turns a corner on a

banked road. Which of the .
diagrams could be the car’s el MG

free-body diagram?

1T

© 2017 Pearson Education, Inc.
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QuickCheck 8.5

A car turns a corner on a

banked road. Which of the .
diagrams could be the car’s el MG

free-body diagram?

Net force is
toward the
center.
H H
\ Static friction
A. B. C. .

Slide 8-57
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Circular Orbits

= The figure shows a =
perfectly smooth,
spherical, airless planet
with one tower of height h.

Planet

= A projectile is launched
parallel to the ground with
speed v, .

= If vy is very small, as in
trajectory A, it simply falls
to the ground along a
parabolic trajectory.

= This Is the “flat-earth approximation.”

© 2017 Pearson Education, Inc.

A Projectile motion

B The ground is
curving away from
the projectile.

D This projectile “falls™ all
the way around the planet
because the curvature of
its trajectory matches
the planet’s curvature.
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Circular Orbits

A Projectile motion

= As the initial speed v, Is z B The ground is
. _ curving away from
Increased, the range of the _ he (el
projectile increases as the /
ground curves away from it. - c
= Trajectories B and C are of
this type D This projectile “falls” all
n |f V IS Sufﬁcienﬂy |arge’ the way around the planet
. because the curvature of
there comes a point where its trajectory matches
the trajectory and the curve the planet’s curvature.

of the earth are parallel.

= |n this case, the projectile
“falls” but it never gets any closer to the ground!

= This is trajectory D, called an orbit.

Slide 8-59
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Circular Orbits

(a)
= |n the flat-earth approximation,
shown in figure (a), the
gravitational force on an object
of mass mis

Parabolic
trajectory

ﬁG — (m g2, Verticaﬂy downward) Flat-earth approximation
= Since actual planets are (b)

Circular orbit

spherical, the real force
of gravity is toward the
center of the planet, as
shown in figure (b):

£
Planet

ﬁG = (mg, toward center)

Spherical planet

Slide 8-60
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Circular Orbits

: : : Circular orbit
= An object in a low circular

orbit has acceleration:
F

net

4 }—; G
| Planet

a= = (g, toward center)

m
= |f the object moves in a circle
of radius r at speed v, the

centripetal acceleration is Spherical planet
2
L (vorbit) L
a,=-—"=8

= The required speed for a circular orbit near a planet’s
surface, neglecting air resistance, Is

Vorbit — VT8

Slide 8-61

© 2017 Pearson Education, Inc.



Circular Orbits

= The period of a low-earth-orbit
satellite Is

27r r | R
=" —on |-
Vorbit g

= Ifris apprOXimately the radius The International Space Station is
of the earth R, = 6400 km, then infree fall.
T 1s about 90 minutes.

= An orbiting spacecraft is constantly in free fall, falling
under the influence only of the gravitational force.

= This is why astronauts feel weightless in space.

Slide 8-62
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Centrifugal Force?

You try to keep moving ««se....,

= The figure shows a bird’s-  straight ahead.

eye view of you riding in a

car as it makes a left turn.  The door provides the
= From the perspective of an central force that makes --.. ,

: _ P P you move in a circle. )

Inertial reference frame, the

normal force from the door -

points inward, keeping you 7

on the road with the car. .

= Relative to the noninertial reference frame of the catr,
you feel pushed toward the outside of the curve.

= The fictitious force that seems to push an object to
the outside of a circle is called the centrifugal force.

= There really is no such force in an inertial reference frame.
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QuickCheck 8.6

A coin sits on a turntable as the
table steadily rotates ccw. The
free-body diagrams below show the
coin from behind, moving away from
you. Which is the correct diagram?

2 Z
Z z Z
r r
r r ¥
A. B. C. D. E.
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QuickCheck 8.6

A coin sits on a turntable as the
table steadily rotates ccw. The

free-body diagrams below show the
coin from behind, moving away from
you. Which is the correct diagram?

Center of circle Net force must point to
is to the left. the center of the circle.
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QuickCheck 8.7

A coin sits on a turntable as the
table steadily rotates ccw. What
force or forces act in the plane of
the turntable?

Static Static Kinetic
friction friction friction

?t'atl.c 1(:Tentrlpetal ?enmpetal ?Fat{c Noforeas’ii
riction orce orce Ticton this plane
A. B. C: B E.
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QuickCheck 8.7

A coin sits on a turntable as the
table steadily rotates ccw. What
force or forces act in the plane of
the turntable?

V Static Static Kinetic

friction friction friction

Static Centripetal Centripetal Static No forces in
friction force force friction this plane
A. B. C. D. E.
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QuickCheck 8.8

Two coins are on a turntable that
steadily speeds up, starting from
rest, with a ccw rotation. Which
coin flies off the turntable first?

Coin 1 flies off first.

Coin 2 flies off first.

Both coins fly off at the same time.

o 0w »

We can’t say without knowing their
masses.
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QuickCheck 8.8

Two coins are on a turntable that
steadily speeds up, starting from
rest, with a ccw rotation. Which
coin flies off the turntable first?

A. Coin 1 flies off first.
/'B. Coin 2 flies off first.

C. Both coins fly off at the same time.

D. We can’t say without knowing their
masses.
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Gravity on a Rotating Earth

" : . The object is in circular motion on a rotating
. The flgure ShOWS_ an ObJeCt belng earth, so there is a net force toward the center.
weighed by a spring scale on the '

North pole\
earth’s equator.

Spring scale

Object on equator

= The observer is hovering in an
iInertial reference frame above
the north pole.

= |f we pretend the spring-scale
readlng IS FS:E) = FG = mg’,,thls h_aS equilibrium in our
the effect of “weakening” gravity. reference frame on

i the rotating earth.
= The free-fall acceleration we
measure in our rotating reference

frame Is
F;, Fy, ,—mw’R GM
g:;: m :F_sz:gearth_sz

Slide 8-70

© 2017 Pearson Education, Inc.



Loop-the-Loop

= The figure shows a roller-
coaster going around a vertical |
loop-the-loop of radius r.

points toward
| the center.

= Note this is not uniform circular
motion: The car slows down
going up one side, and speeds
up going down the other.

= At the very top and very bottom points, only the car’s
direction is changing, so the acceleration is purely
centripetal.

= Because the car is moving in a circle, there must be
a net force toward the center of the circle.
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Loop-the-Loop

= Consider the roller-coaster
free-body diagram at the bottom
of the loop.

points toward
{| the center.

= Since the net force is toward the
center (upward at this point), n > F.

= This is why you “feel heavy” at the
bottom of the valley on a roller coaster.

2

m\vy
EFr:nr_I_(FG)r:n_mg:mar: (:Ot)
2
m(vbot)

n=mg 3

= The normal force at the bottom is larger than mg.
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Loop-the-Loop

The figure shows the roller-coaster

free-body diagram at the top of

the loop.

= The track can only push on the
wheels of the car, it cannot pull,
therefore 71 presses downward.

= The car is still moving in a circle, so

the net force is also downward:

points toward
{| the center.

2
m(Vmp)

r

ZF,,Zn,,—I—(FG),.Zn-I-mg:

= The normal force at the at the top can exceed mg If v,
IS large enough.

© 2017 Pearson Education, Inc.
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Loop-the-Loop

= At the top of the roller coaster,
the normal force of the track on
the car iIs

points toward
{| the center.

2
m(vtop)
n = PR mg

= As vy, decreases, there comes
a point when n reaches zero. e

= The speed at which n =0 is called the critical speed:

o= [ = /g
m

= This is the slowest speed at which the car can complete
the circle without falling off the track near the top.
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Loop-the-Loop

A roller-coaster car at the
top of the loop.

© 2017 Pearson Education, Inc.

The normal force adds to gravity
to make a large enough force for
the car to turn the circle.

V>V,

At v, gravity alone is enough
force for the car to turn the
circle. 77 = 0 at the top point.

Normal force
became zero here.

The gravitational force is
too large for the car to stay
in the circle!
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QuickCheck 8.9

A physics textbook swings back
and forth as a pendulum. Which is

the correct free-body diagram
when the book is at the bottom

and moving to the right?
C. D. E.
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QuickCheck 8.9

A physics textbook swings back
and forth as a pendulum. Which is M
the correct free-body diagram
when the book is at the bottom

and moving to the right? Centripetal acceleration
“ requires an upward force.

Slide 8-77
© 2017 Pearson Education, Inc.



QuickCheck 8.10

A car that's out of gas coasts
over the top of a hill at a steady
20 m/s. Assume air resistance
IS negligible. Which free-body
diagram describes the car at
this instant?
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QuickCheck 8.10

A car that's out of gas coasts
over the top of a hill at a steady
20 m/s. Assume air resistance
IS negligible. Which free-body
diagram describes the car at

g Now the centripetal
this instant? acceleration points down.

v
SN,

© 2017 Pearson Education, Inc.
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QuickCheck 8.11

A roller coaster car does a loop-
the-loop. Which of the free-body

diagrams shows the forces on m
the car at the top of the loop?

Rolling friction can be neglected.

1
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QuickCheck 8.11

A roller coaster car does a loop-

the-loop. Which of the free-body

diagrams shows the forces on m
the car at the top of the loop?

Rolling friction can be neglected.

v
AL

A, B. G D. E.

The track is above the car, so
the normal force of the track
pushes down. Slide 8-81
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Nonuniform Circular Motion

= The figure shows a
particle moving in a circle
of radius r.
= |n addition to a radial
force component—
required for all circular
motion—this particle
experiences a tangential
force component and
hence a tangential
acceleration: The radial force *

causes the centripetal
th acceleration a,.
a, — —

dt

© 2017 Pearson Education, Inc.

el

et

f-axis

/

7 (Freds

F.,
*

The tangential
force causes
the tangential
acceleration a,.
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Dynamics of Nonuniform Circular Motion

= Force and acceleration . _my/ )
are related through Foo): = 2 Fr =ma, === =ma’r
Newton’s second law: Foo): = 2 F,=ma,
net)z EF =1
[-axis
'\ /
- ( et)t
(F nel)r . ; -'F.’...
The ta;"]gcntial
force causes
The radial force the tangential
causes the centripetal st o
acceleration a,. r Slide 8-83
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Problem-Solving Strategy: Circular-Motion

Problems

Circular-motion problems
MobpEL Model the object as a particle and make other simplifying assumptions.
visuALIZE Draw a pictorial representation. Use rtz-coordinates.

Establish a coordinate system with the r-axis pointing toward the center of
the circle.

Show important points in the motion on a sketch. Define symbols and identify
what the problem is trying to find.

Identify the forces and show them on a free-body diagram.
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Problem-Solving Strategy: Circular-Motion

Problems

Circular-motion problems
soLve Newton’s second law is

mvz

(Fnet)r = EFr —ma, = Tt = maw’r
(Baee)= ZFt — ma,
(Fnet)z = EFZ =)

Determine the force components from the free-body diagram. Be careful with
signs.

The tangential acceleration for uniform circular motion is a, = 0.

Solve for the acceleration, then use kinematics to find velocities and positions.

Assess Check that your result has the correct units and significant figures, is
reasonable, and answers the question.
Exercise 11 m
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QuickCheck 8.12

A ball rolls ccw around the inside
of a horizontal pipe. The ball is
fastest at the lowest point, slowest
at the highest point. At the point
shown, with the ball moving down,
what is the direction of the net
force on the ball?

— — |

A. B. C. D. E.
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QuickCheck 8.12

A ball rolls ccw around the inside
of a horizontal pipe. The ball is
fastest at the lowest point, slowest
at the highest point. At the point
shown, with the ball moving down,
what is the direction of the net
force on the ball?

v
—_— -— l \ \ "
A. B. C. / D. E.

Gravity causes the The normal force
acceleration of causes the acceleration
changing speed. of changing direction.
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Chapter 8 Summary Slides
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General Principles

Newton’s Second Law

Expressed in x- and y-component form:

(Fﬂct)x = EFI = max
(Fnet)y = EFy = ma,y

© 2017 Pearson Education, Inc.

Expressed in rfz-component form:

mv,z

(Faet)r= EFr =ma,= Y = mw’r
0 uniform circular motion
(Foes)y = EFrz {

ma, nonuniform circular motion

(Fnct)z: EFZZO
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General Principles

Uniform Circular Motion

» Speed is constant. . e
—+ Vv ~ 14
» F .. points toward the center of the i = \|¥
= | n net
circle. i “
- /
* The centripetal acceleration a points o\ Frs /
toward the center of the circle. It A 3N\

changes the particle’s direction but
not its speed.
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General Principles

Nonuniform Circular Motion
* Speed changes.
. F . and d@ have both radial and tangential components.

* The radial component changes the particle’s
direction.

* The tangential component changes the particle’s = 4
speed.
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Important Concepts

rtz-coordinates

t
* The r-axis points toward the k
center of the circle. Y

* The r-axis is tangent,

pointing counterclockwise. ' %
z-axis is out
of the page

Plane of motion
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Important Concepts

Projectile motion

* With no drag, the x- and y-components of Projectile motion with drag
acceleration are independent. The trajectory

is a parabola. i
» With drag, the trajectory is not a parabola. =
Maximum range is achieved for an angle

less than 45°. o
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Applications

Orbits

An object acted on only by gravity has a
circular orbit of radius r if its speed is

v= Vg

The object is in free fall.
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Applications

Circular motion on surfaces

Circular motion requires
a net force pointing to the

center. n must be > 0 for 1 net -
the object to be in contact L o'y -
with a surface. Fg =
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