

TANA AND AND

Nicholas J. Giordano

Nicholas J. Giordano

www.cengage.com/physics/giordano

Chapter 19

Electric Currents and Circuits

Marilyn Akins, PhD • Broome Community College

Electric Circuits

- The motion of charges leads to the idea of electric circuits
 - A circuit occurs when charge can flow in a closed path
- Also examine circuit components
 - Resistors
 - Capacitors
- Conservation principles will be useful
 - Conservation of Charge
 - Conservation of Energy

Introduction

Electric Current

- Electrons can move easily through a wire
- The magnitude of the current is measured by the amount of charge that moves along the wire
- Current, I, is defined as

$$I = \frac{\Delta q}{\Delta t}$$

Electric Current, cont.

- Current is defined in terms of net positive charge flow
 - Historical reasons
- SI unit is Ampere (A)
 - In honor of André-Marie Ampère
 - 1 A = 1 C / s
- In the SI system, the ampere is a primary unit
 - Coulomb and volt, for example, are defined in terms of the ampere

Movement of Charges

- The definition of current uses the net charge, Δq, that passes a particular point during a time interval, Δt
- The amount of charge could be the result of many possible configurations, including
 - A few particles each with a large charge
 - Many particles each with a small charge
 - A combination of positive and negative charges

Movement of Charges, cont.

- If the current is carried by positive charges moving with a given velocity, the direction of the current is parallel to the velocity
- If current is carried by negative charges, the direction of the current is opposite the charges' velocity

Movement of Charges, final

- A positive electric current can be produced by
 - Positive charges moving in one direction
 - Negative charges moving in the opposite direction
- Current in a metal is carried by electrons
- In a liquid or gas, the current is generally carried by a combination of positive ions moving in one direction and negative ions moving in the opposite direction

Current and Potential Energy

- For charge to move along a wire, the electric potential energy at one end of the wire must be higher than the electric potential energy at the other end
- Electric potential is related to electric potential energy by V = PE_{elec} / q
 - The potential is referred to simply as "voltage"

Current and Voltage

- The current is directed from a region of higher potential to a region of lower potential
 - Or higher to lower voltage
- The direction of I is always from high to low potential, regardless if the current is carried by positive or negative charges
- The potential difference may be supplied by a battery

Construction of a Battery

- Alessandro Volta and his contemporaries developed the first batteries
- Batteries convert chemical energy to electrical energy
- In drawing an electric circuit the terminals of any type of battery are labeled with + and -

Volta's Battery

- Volta's first batteries consisted of alternating sheets of zinc and copper
- These were separated by a piece of parchment soaked with salt water

- The potential difference between a battery's terminals is called an *electromotive force*, or *emf*
 - The term was adopted before it was understood that batteries produce an electric potential difference, not a force
- The emf is denoted with ε and referred to as voltage
- The value of the emf depends on the particular chemical reactions it employs and how the electrodes are arranged

Simple Circuit

- If the battery terminals are connected to two ends of a wire, a current is produced
- The electrons move out of the negative terminal of the battery through the wire and into the positive battery terminal

Simple Circuit, cont.

- The charge moves from one terminal to the other through a circuit
- The chemical reaction moves charge internally between the electrodes
- No net charge accumulates on the battery terminals while the current is present

Ideal vs. Real Batteries

- An ideal battery has two important properties
 - It always maintains a fixed potential difference between its terminals
 - This emf is maintained no matter how much current flows from the battery
- Real batteries have two practical limitations
 - The emf decreases when the current is very high
 - The electrochemical reactions do not happen instantaneously
 - The battery will "run down"
 - It will not work forever

Α

MOTION OF ELECTRONS IN A WIRE

If I = 0, then on average electrons end up where they start; $\vec{v}_{ave} = 0$.

- The electrons moving in a wire collide frequently with one another and with the atoms of the wire
- This results in the zigzag motion shown
- When no electric field is present, the average electron displacement is zero
 - There is no net movement of charge
 - There is no current

Current, cont.

Electrons have a negative charge, so the force due to the field \vec{E} is to the left. The acceleration and drift velocity are thus to the left.

- With a battery connected, an electric potential is established
- There is an electric field in the wire: E = V / L
- The electric field produces a force that gives the electrons a net motion
- The velocity of this motion is the *drift velocity*

Current and Drift Velocity

The electrons in this volume reach the end of the wire in time Δt .

- The current is equal to the amount of charge that passes out the end of the wire per unit time
- Let *n* be the density of electrons per unit volume
- Let A be the cross-sectional area of the wire
- $I = -n e A v_d$

Ohm's Law

- The drag force on electrons leads to a drift velocity proportional to the force pushing the electrons through the metal
- The force is proportional to the electric field, so the drift velocity is proportional to the field
- The electric field is proportional to the potential difference, so the drift velocity is proportional to the potential difference
- The current is proportional to the drift velocity, so the current is proportional to the potential difference
- In summary, $v_d \propto E \rightarrow v_d \propto V \rightarrow I \propto V$

Ohm's Law, cont.

 The constant of proportionality between I and V is the electrical resistance, R

$$I = \frac{V}{R}$$

- This relationship is called Ohm's Law
- The unit of resistance is an Ohm, $\boldsymbol{\Omega}$
 - $\Omega = \text{Volt} / \text{Ampere}$
- The value of the resistance of a wire depends on its composition, size, and shape

Resistivity

- The resistivity, p, depends only on the material used to make the wire
- The resistance of a wire of length L and crosssectional area A is given by

$$R = \rho \frac{L}{A}$$

 The resistivities of some materials are given in table 19.1 A = Cross-sectional area $R = \rho \frac{L}{A}$

Ohm's Law: Final Notes

- Ohm's Law predicts a linear relationship between current and voltage
- Ohm's Law is not a fundamental law of physics
- Many, but not all, materials and devices obey Ohm's Law
- Resistors do obey Ohm's Law
 - Resistors will be used as the basis of circuit ideas

Resistors

- Resistors can be made in many shapes and sizes
- Each will have a resistance proportional to the current through and the potential across the resistor

Circuit Schematic

- The circuit diagram (A) shows the symbols for the resistor and the battery
- Since the resistance of the wires is much smaller than that of the resistors, a good approximation is R_{wire}=0

Circuit Symbols

TABLE 19.2 Symbols for Some Commonly Used Circuit Elements

Current and Drift Velocity

Current is related to the drift velocity

$$v_d = -\frac{l}{neA}$$

- For a household size copper wire carrying 1 A of current, the drift velocity is about -0.01 m/s
- There is no perceptible time delay between when you push a switch and when the light comes on
- The speed of the electric current is equal to the speed of electromagnetic radiation in the wire
 - This is nearly the speed of light

DC Circuits

- An electric circuit is a combination of connected elements forming a complete path through which charge is able to move
- Calculating the current in the circuit is called *circuit* analysis
- DC stands for *direct current*
 - The current is constant
- The current can be viewed as the motion of the positive charges traveling through the circuit
- The current is the same at all points in the circuit

Circuits, cont.

- There must be a complete circuit for charge flow
 - There must be a return path from the resistor for the current to return to the voltage source
- If the circuit is open, there is no current flow anywhere in the circuit

Kirchhoff's Loop Rule

- Consider the electric potential energy of a test charge moving through the circuit
- $\Delta V = \varepsilon I R = 0$
 - For the entire circuit
 - Assumes wires have no resistance

Kirchhoff's Loop Rule, cont.

- Conservation of energy is the heart of the circuit analysis
- *Kirchhoff's Loop Rule* states the change in potential energy of a charge as it travels around a complete circuit loop must be zero
- Since PE_{elec} = q V, the loop rule also means the change in the electric potential around a closed circuit path is zero

Energy in a Resistor

- The test charge gained energy when it passed through the battery
- It lost energy as it passed through the resistor
- The energy is converted into heat energy inside the resistor
 - The energy is dissipated as heat
 - It shows up as a temperature increase of the resistor and its surroundings

Power

- In the resistor, the energy decreases by q V = (I Δt)
 - Power is energy / $\Delta t = I V$
- Applying Ohm's Law, $P = I^2 R = V^2 / R$
- The circuit converts chemical energy from the battery to heat energy in the resistors
 - Applies to all circuit elements

Resistors in Series

- When the current passes through one resistor and then another, the resistors are said to be in series
- Applying Kirchhoff's Loop Rule: + $\epsilon - I R_1 - I R_2 = 0$

Series Resistors – Equivalent R

- Any number of resistors can be connected in series
- The resistors will be equivalent to a single resistor with R_{equiv} = R₁ + R₂ + R₃ + ...
- An equivalent resistor means that an arrangement of resistors can be replaced by the equivalent resistance with no change in the current in the rest of the circuit
 - The idea of equivalence will apply to many other types of circuit elements

Batteries in Series

- Batteries can also be connected in series
 - The positive terminal of one battery would be connected to the negative terminal of the next battery
- The combination of two batteries in series is equivalent to a single battery with emf of

$$\varepsilon_{equiv} = \varepsilon_1 + \varepsilon_2 + K$$

Resistors in Parallel

Α

- In some circuits, the current can take multiple paths
 - The different paths are called *branches*
- The arrangement of resistors shown is called resistors in parallel
- The currents in each branch need not be equal

Resistors in Parallel, cont.

- Two unknown currents must be solved for
- Use three currents:
 - I₁ through R₁
 - I₂ through R₂
 - I₃ through the wires and other parts of the circuit
- The three currents are not independent

Kirchhoff's Junction Rule

- The points where the currents are connected are called junctions or nodes
- Electric charge cannot be created or destroyed, so the amount of current entering a junction much be equal to the current leaving it
- This is called Kirchhoff's Junction Rule
- Both of Kirchhoff's Rules may be needed to solve a circuit
 - Any starting point can be used to make a complete loop around the circuit

Applying the Junction Rule

- For path 1, $+\epsilon I_1 R_1 = 0$
- For path 2, $+\epsilon I_2 R_2 = 0$
- The total current is

$$I_3 = I_1 + I_2 = \frac{\varepsilon}{R_1} + \frac{\varepsilon}{R_2}$$

Kirchhoff's Rules, Summary

- Kirchhoff's Loop Rule
 - The total change in the electric potential around any closed circuit path must be zero
- Kirchhoff's Junction Rule
 - The current entering a circuit junction must be equal to the current leaving the junction
- These are actually applications of fundamental laws of physics
 - Loop Rule conservation of energy
 - Junction Rule conservation of charge
- The rules apply to all types of circuits involving all types of circuit elements

Problem Solving Strategies

Recognize the principle

All circuit analysis is based on Kirchhoff's loop and junction rules

Sketch the problem

- Start with a circuit diagram
- Identify all the different circuit branches
- The currents in the branches are generally the unknown variables in the problem

Problem Solving, cont.

Identify

- Find all the possible closed loops and junctions in the circuit
 - Apply Kirchhoff's loop rule to each closed loop to get a set of equations involving the branch currents, battery emfs and resistances in each loop
 - Apply Kirchhoff's junction rule to each junction to get equations relating different branch currents

Solve

Solve the equations for the current in each branch

Check

- Consider what your answer means
- Does your answer make sense?

Using Kirchhoff's Rules

- The loop rule can be used as often as the resulting equation is independent of the equations from the other loop equations
 - An equation will be independent as long as it contains at least one circuit element that is not involved in other loops
- When using the loop rule, pay close attention to the sign of the voltage drop across the circuit element
 - You can go around the loop in any direction

Directions in Kirchhoff's Rules

- The signs of the potentials in Kirchhoff's loop rule will depend on assumed current direction
- Moving parallel to the current produces a potential drop across a resistor
- After solving the equations, if the current is positive the assumed direction of the current is correct
- If the current is negative, the direction of the current Is opposite the assumed direction
 Section 19.4

Kirchhoff's Rules: Numbers of Equations

- In general, if a circuit has N junctions, the junction rule can be used N – 1 times
- In general, a loop equation will be independent of other loop equations if it contains at least one circuit element that is not involved in the other loops

Equivalent Resistance – Parallel

 A set of resistors in parallel can be replaced with an equivalent resistor

$$\frac{1}{R_{equiv}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Circuit Analysis, Final Notes

- Some complex circuits can be solved by combinations of series and parallel rules
- Other circuits must be analyzed directly by Kirchhoff's Rules
- Connecting resistors in series always gives a total resistance larger than the resistance of any of the component resistors
- Connecting resistors in parallel always gives a total resistance smaller than the resistance of any of the component resistors

Real Batteries

- An ideal battery always maintains a constant voltage across its terminals
 - The value of the voltage is the emf of the battery
- A real battery is equivalent to an ideal battery in series with a resistor, R_{battery}
 - This is the internal resistance of the battery

Real Battery, cont.

The current through the internal resistance and the external resistor is

$$I = \frac{\mathcal{E}}{R + R_{battery}}$$

The potential difference across the real battery's terminals is

potential of real battery =
$$IR = \varepsilon \left(\frac{R}{R + R_{battery}} \right)$$

Kirchhoff's Rules with Capacitors

- Kirchhoff's Rules can be applied to all kinds of circuits
- The change in the potential around the circuit is

 $+\epsilon - I R - q / C = 0$

- Want to solve for I
- I and q will be time dependent

Capacitors, cont.

- When the switch is closed, there is a current carrying a positive charge to the top plate of the capacitor
- When the capacitor plates are charged, there is a nonzero voltage across the capacitor

CHARGING A CAPACITOR

Α

Charging Capacitors

 The current in the circuit is described by

$$I = \frac{\varepsilon}{R} e^{-t/\tau}$$

• The voltage across the capacitor is

$$V_{cap} = \mathcal{E}\left(1 - e^{-t/\tau}\right)$$

- The charge is given by $q = CV_{cap} = C\varepsilon \left(1 - e^{-t/\tau}\right)$
- τ = RC and is called the time constant

CHARGING A CAPACITOR

Time Constant

- Current
 - At the end of one time constant, the current has decreased to 37% of its original value
 - At the end of two time constants, the current has decreased to 63% of its original value
- Voltage and charge
 - At the end of one time constant, the voltage and current have increased 63% of their asymptotic values

Capacitor at Various Times

- Just after the switch is closed
 - The charge is very small
 - V_{cap} is very small
 - I = ε / R
- When t is large
 - The charge is very large
 - V_{cap} ≈ ε
 - The polarity of the capacitor opposes the battery emf
 - The current approaches zero

Capacitors at Various Times, Circuits

AT TIME $t \approx 0$

Discharging the Capacitor

- Current: $I = -\frac{\varepsilon}{R} \left(1 e^{-t/\tau} \right)$
- Voltage: V_{cap} = ε e^{-t/τ}
 Charge: q = C ε e^{-t/τ}
- Time constant: $\tau = RC$, the same as for charging

Capacitors in Series

- Several capacitors can be connected in series
- The equivalent capacitance is

$$\frac{1}{C_{equiv}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

 The equivalent capacitance is smaller than any of the individual capacitors

- Capacitors connected in parallel also can be equivalent to a singe capacitor
- $C_{equiv} = C_1 + C_2 + C_3 + \dots$
- The equivalent capacitance is larger than any of the individual capacitors

Ammeters

- An *ammeter* is a device that measures current
- An ammeter must be connected in series with the desired circuit branch
- An ideal ammeter will measure current without changing its value
 - Must have a very low resistance

An ammeter must be inserted in series with the branch whose current is to be measured.

Α

Voltmeters

- A voltmeter measures the voltage across a circuit element
- It must be connected in parallel with the element
- An ideal voltmeter should measure the voltage without changing its value
 - The voltmeter should have a very high resistance

A voltmeter is inserted in parallel with the circuit element whose voltage drop (or increase) is to be measured.

B

Filters

- It is often desirable to filter out time-dependent fluctuations in a voltage signal
- Circuits that can do so are called *filters*
- They can be constructed with RC combinations
- A filter is useful in many applications
 - Noise in a radio signal
- The amount of filtering depends on the values of R and C

Electric Currents in Nerves

- Many nerves are long and thin, much like wires
- The conducting solution inside the fiber acts as a resistor
- The lipid layer acts as a capacitor
- The nerve fiber behaves as an RC circuit
 - Needs a small time constant
 - Small R through large radius
 - Small C through a layer of myelin increasing the distance between the capacitor plates

Electric Currents and Health

- Your body is a moderately good conductor of electricity
- The body's resistance when dry is about 1500 Ω
- When wet, the body's resistance is about 500 Ω
- Current is carried by different parts of the body
 - Skin
 - Internal organs

TABLE 19.3 Effect of ElectricCurrent on the Human Body

Current (mA)	Effect on Body
1	Threshold for sensing (can "feel it tingle")
5	Harmless
10-20	Involuntary muscle contraction
50	Pain
100-200	Disrupts the heart
300	Burns

Household Currents

- The voltage in your home is an AC voltage oscillating at a certain frequency
 - Frequency is 60 Hz in the US
- Most modern outlets and plugs have three connections
 - Two are flat
 - One is round and connects to ground
 - Polarized plugs have flat connectors of different sizes
 - The larger connects to the lower potential

Fuses and Circuit Breakers

- In a fuse, current passes through a thin metal strip
 - This strip acts as a resistor with a small resistance
 - If a failure causes the current to become large, the power causes the strip to melt and the current stops
- A circuit breaker also stops the current when it exceeds a predetermined limit
 - The circuit breaker can be reset for continued use

Temperature Dependence of Resistance

- As temperature increases, the ions in a metal vibrate with larger amplitudes
 - This causes more frequent collisions and an increase in resistance
- For many metals near room temperature,

 $\rho = \rho_o \left[1 + \alpha (T - T_o) \right]$

- α is called the *temperature coefficient of the resistivity*
- The resistivity and resistance vary linearly with temperature

Superconductivity

- At very low temperatures, the linearity of resistance breaks down
- The resistivity of metals approach a nonzero value at very low temperatures
- In some metals, resistivity drops abruptly and is zero below a critical temperature
- Metals for which the resistivity goes to zero are called *superconductors*

