Chapter 11: Atomic Mass
Spectrometry (Inorganic MS)

Mass Spectrometers

ICP-MS

Spark Source MS

Glow-Discharge MS

Elemental Surface Analysis by MS
Laser Ablation ICP-MS



Atomic Mass Spec processes

o Atomization (sample intro)

e Conversion to ions

e Separation based on m/z ratio
e Detection

In other forms of MS (GC-MS or MS of
organic compounds), sample introduction
does not involve making atoms, just

getting molecules into the high vacuum
system
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Advantages of Atomic Mass Spec over
Optical Atomic Spectrometry

1) Detection limits are better, sometimes
several orders of magnitude better

2) Very simple spectra

3) Ability to measure isotope ratios
Disadvantages

1) Equipment cost

2) Instrument drift

3) Isotopic interferences



Atomic Mass Spec has been around for a
long time but one of the most significant
advances in this field occurred recently,
the development of ICP-MS

TABLE 11-1 Types of Atomic Mass Spectrometry
Name Acronym Atomic lon Sources Typical Mass Analyzer
Inductively coupled plasma ICPMS High-temperature argon plasma Quadrupole
Direct current plasma DCPMS High-temperature argon plasma Quadrupole
Microwave-induced plasma MIPMS High-temperature argon plasma Quadrupole
Spark source SSMS Radio-frequency electric spark Double-focusing
Thermal ionization TIMS Electrically heated plasma Double-focusing
Glow discharge GDMS Glow-discharge plasma Double-focusing
Laser microprobe LMMS Focused laser beam Time-of-flight
Secondary ion SIMS Accelerated ion bombardment Double-focusing




Detectors = Transducers for Mass Spec
1) Electron Multipliers — transducer of choice

Discrete dynode electron multiplier works like
a photomultiplier tube
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2) Faraday Cup — historically important, not
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Figure 11-3 Faraday cup detector. The potential on the
ion suppressor plates is adjusted to minimize differential
response as a function of mass.




Separation of ions = Mass Analyzers
1) Quadrupole Mass Analyzers
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Figure 11-4 A quadrupole mass spectrometer.
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Figure 11-7 Voltage relationships during a mass scan
with a quadrupole analyzer.
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2) Time of Flight Mass Analyzers

Sample Drift tube (length L) lon detector
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3) Double-Focusing Mass Analyzer
employs electrostatic analyzer &
magnetic sector analyzer

£y

[ LY
A |
/ \
/ \
/ \
/ \
! \
/
. / \
Accelerating f \
Spark J/ slit th_____d_.-a,
: “ 7 oz’ \
source e, / 31730 :
/8 ; \
f!f\ ! \

Electrostatic

plane
analyzer

— 2 "
B e ——— ey \
—_— ——"__..’-T \
+ Focal _ ..-xll

mylz < malz

Magnetic
analyzer

Photographic
plate



Skimmer
cone

fon ‘\\ e ==
i | 7 ..4..@ecsec. |
il 17 }J JJE l / A

\
e,

L
L.

Coolant

Quadrupole flow

Hydride

Auxiliary /| generation

#F
flow /

_=,_r>|_ CIE=5]=] 'I'i'l'llr‘ ~~—__| Electrothermal ;

Torch \ vaporization

N/

g
"' f. =

I \l I/ I rc:}i};'?b}::r E
Electron Diffusion MNebulizer \_..n--— e
multiplier pumps flow Nebulizer §
-
ICP-MS showing various rinjecnm | [ B
sample introduction modes, ICP \ /

torch, mass analyzer & detector il




ICP-MS

Developed early 1980’s
_ow detection limits (0.1 to 10 ppb)
High selectivity

Good precision (2 - 4%) & accuracy
m/z range 3 - 300 = 90% of periodic table

Resolution 1

m/z

Dynamic range 10°

Approximate
Various sam

y 10 sec measurement time

nle introduction methods



. 3
Channel counts x10-

ICP Mass Spectrum of rock sample produced
by Laser Ablation

8
200 i
“TAl S
39+
4“AF+
m 48t M
) A |

()

0 20 40 60
Mass (Da)



R N

¢ i} 2 6 Ce lines
3 e Hce
|
. R Comparison of
A ';‘ M ICR optical
2f|}{] l 300 I Z{j::muuT 5(_!}6 | ﬁ(|}0 e m I SS I O n

Hem spectrum &
i 2 Ce isotopes ICP-MS
spectrum for
100 ppm
cerium (Ce)

| | | i
0 40 80 120 160



Spectroscopic Interferences

1) Isobaric interferences — element Isotopes
with same m/z (e.g. *3In* & °In* overlap
with 13Cd* & 1°Sn*)

2) Polyatomic ion interferences — formed
from interactions of species in plasma

3) Oxide & Hydroxide species interference —
MO* or MOH™* formed In plasma

4) Matrix effects — similar to optical atomic
spectrometry




TABLE 11-2 Calcium Oxide and Hydroxide
Species and Other Potential

Interferences in the Mass Region
for Ni Determination

m/z Element Interferences
56 Fe(91.66) 40ArQ, 49Ca0

57 Fe(2.19) 4ArOH, “0CaOH
58 Ni(67.77), Fe(0.33) 42Ca0, NaCl

59 Co(100) 43Ca0, 42CaOH

60 Ni(26.16) 43Ca0OH, “Ca0

61 Ni(1.25) 4CaOH

62 Ni(3.66) 46Ca0, NayO, NaK
63 Cu(69.1) 46CaOH, “°ArNa
64 Ni(1.16), Zn(48.89) 3280, 328,, ¥Ca0
65 Cu(30.9) 338323, 3350,, 8CaOH
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Figure 11-13 [ICPMS spectrum for the rare earth elements. Solutions contain 1
pg/mL of each element. (From K. E. Jarvis, ]. Anal. Atom. Spectrom., 1989, 4, 563.
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Figure 11-14 Detection limits for selected elements by ICPMS (black bars)
compared with those for ICP OES (cross-hatched bars) and ETAAS (gray bars)
(inductively coupled plasma optical emission spectrometry and electrothermal
atomic absorption spectrometry, respectively), plotted on a logarithmic scale in
concentrations of ppb (or pg/L). Because ETAAS detection limits are inherently
in mass units (pg), they have been converted to concentration by assuming a 20
pL sample. (From M. Selby and G. M. Hieftje, Amer. Lab., 1987 (8), 20. With permission.)
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Figure 11-15 [CPMS calibration curves for several rare earth elements.



£ 11-3 Quantitative Determination of
Trace Elements in a Standard
Sample of Water

ICP-M57

fon NBS¢* Mean RSD (%)?

9Bet 19 21 20
sy + 54 52 6
s2¢r+ 17 18 12
SMn*+ 32 34 5
$9Co+ 19 21 7
667+ 69 57 11
a5+ 77 76 5
89+ 243 297 7
%Mo+ 97 134 9
10770+ 2.8 3.5 16
4+ 10 13 22
138+ 47 74 17

[ 208ppy+ 27 31 8

_, centration in parts per billion.

Mased on 10 determinations.



Isotope Ratio Measurements — ICP-MS
makes measurement of isotope ratios for
a sample become relatively easy in many
cases. This is a powerful technigue that
can identify elements from different
sources, allow use of tracers, etc.



Chapter 26: An Introduction
to Chromatographic Separations

e Column Chromatography

 Migration Rates
— Distribution Contstants
— Retention Times
— Selectivity Factor

e Zone Broadening & Column Efficiency
e Optimizing Performance
* Resolution






