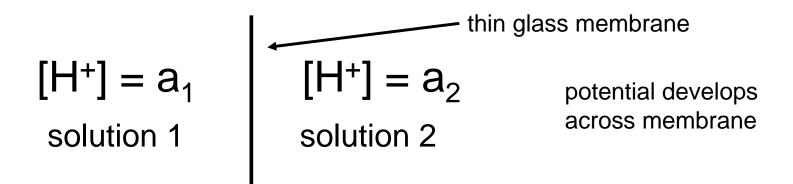
Chapter 22: Introduction to Electroanalytical Chemistry

Two general categories:

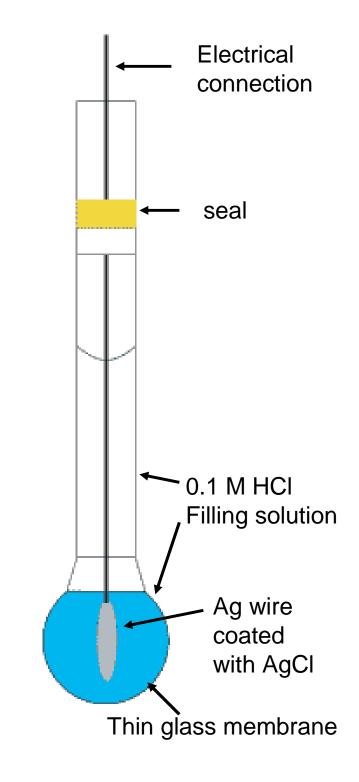
- Potentiometric Systems measure voltage (i.e., potential) of a galvanic cell (produces electricity spontaneously)
- Voltammetric Systems control potential & usually measure current in an electrolytic cell (consumes power to cause an electrochemical reaction to occur)

Potentiometry


- Determine concentrations by measuring the potential (i.e., voltage) of an electrochemical cell (galvanic cell)
- Two electrodes are required

1) Indicator Electrode – potential responds to activity of species of interest

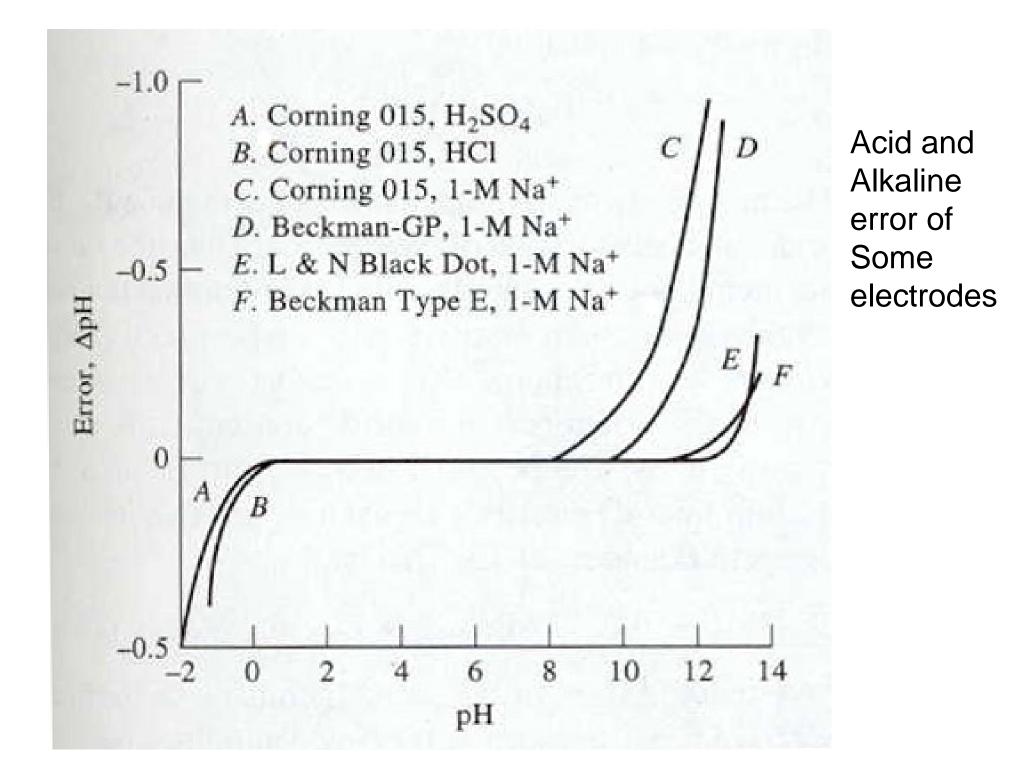
2) Reference Electrode – chosen so that its potential is independent of solution composition.


Membrane Electrodes

- Several types Glass membrane electrode
 Solid State " "
 - Liquid Junction "
 - Permeable ""
- Most important is glass electrode for pH

Glass pH Electrode

- E = K' 0.0591 pH
- Combine with reference electrode and meter
- Half cell voltage proportional to pH
- Nernstian slope
- Intercept is K', no E^o
- Calibrate with buffers

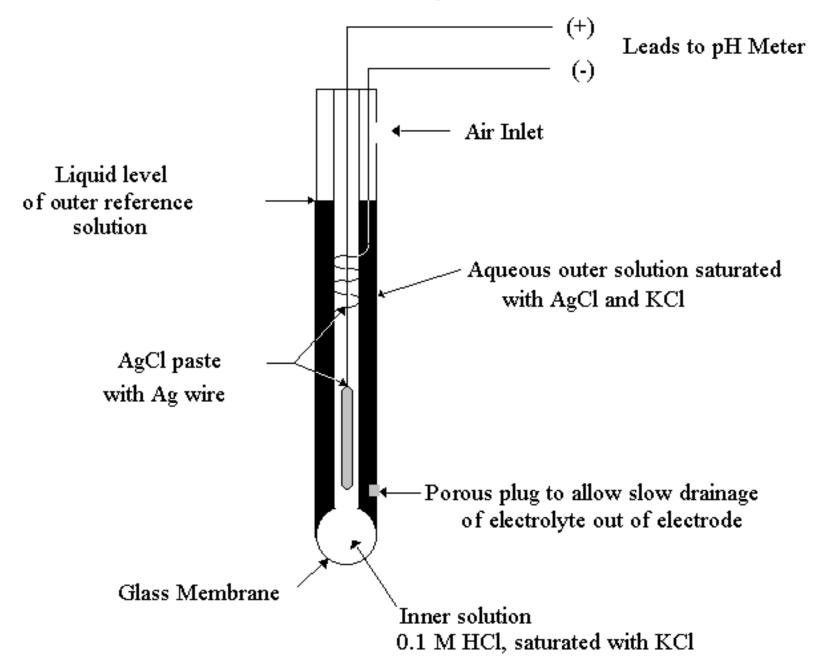

- pH measurements are only as good as the buffers used to calibrate
 - Accuracy good to +0.01 units*
 - Precision may be good to ± 0.001 units
- Junction potential dependent on ionic strength of solution – E_j may be a significant error if test solution has different ionic strength than buffers
- * Unless using special buffers, temp. control & a Faraday cage

 Asymmetry potential is another non-ideal potential that arises possibly from strain in the glass. When both internal & external H⁺ solutions are the same activity, potential should be 0 but it's not

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}_{\mathsf{ind}} - \mathsf{E}_{\mathsf{ref}} + \mathsf{E}_{\mathsf{j}} + \mathsf{E}_{\mathsf{a}}$$

 Temperature of electrodes, calibration buffers and sample solutions must be the same primarily because of T in Nernst Eq. ATC probes are available for many meters

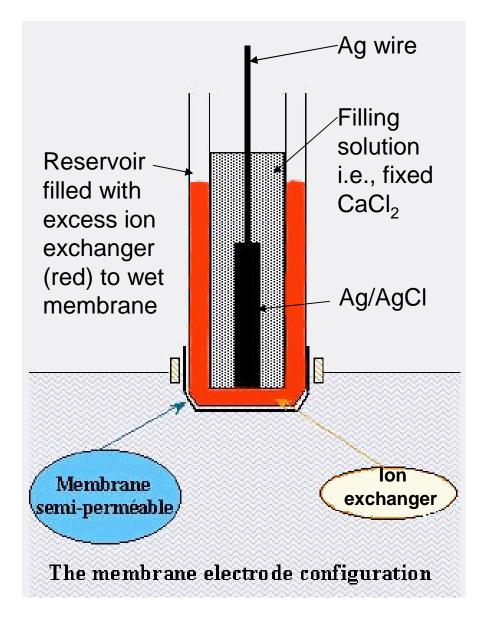
 Alkaline Error or Sodium Error occurs when pH is very high (e.g., 12) because Na⁺ concentration is high (from NaOH used to raise pH) and H⁺ is very low. Electrode responds slightly to Na⁺ & gives a lower reading than actual pH. This is related to the concept of selectivity coefficients where the electrode responds to many ions but is most selective for H⁺. Problem occurs because Na⁺ is 10 orders of magnitude higher than H⁺ in the solution.



- Acid Error electrode reads slightly higher than the actual pH in very acidic solutions (not well understood)
- Response Time related to activity for all potentiometric electrodes & is fast at high activity (concentration) & slow at low conc.
- Hydration of Glass Surface glass electrodes must be kept hydrated for good measurement & must be rehydrated for 24 hrs if it dries out – will cause noisy readings

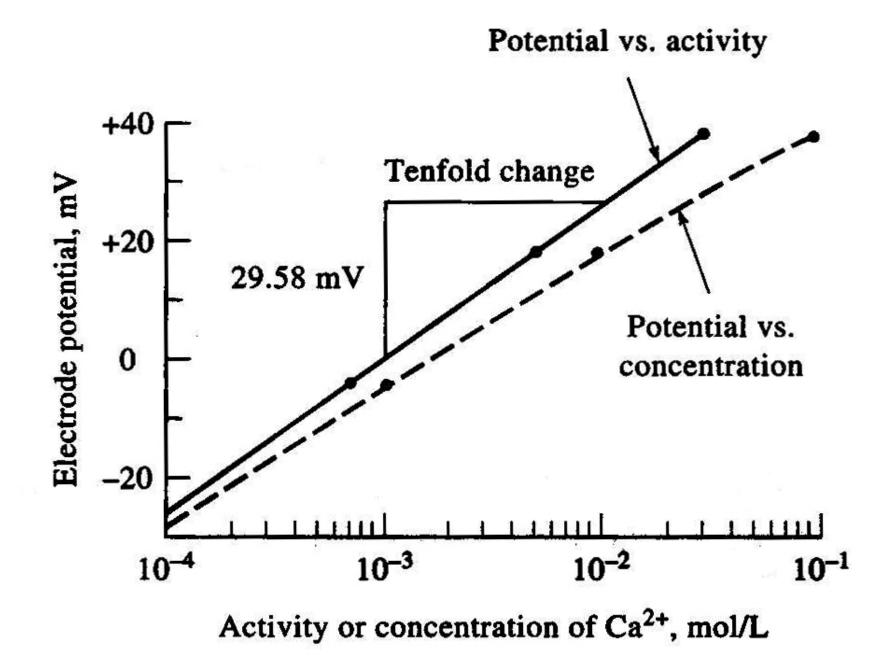
Glass Electrode Summary

- Glass membrane electrodes are very good indicator electrodes in potentiometry
- Must exercise care in calibration and in maintaining integrity of glass membrane
- Some errors exist & are unavoidable
- Glass electrodes available for Na⁺, K⁺, NH₄⁺, Rb⁺, Cs⁺, Li⁺, Ag⁺ (cations only) by varying glass composition
- Combination electrodes combine pH & ref.


Combination pH Electrode

Liquid Membrane Electrodes

- Calcium Electrode is good example
- Liquid ion exchanger


 water immiscible
 organic compound
 with phosphate
 groups selective for
 Ca²⁺ in a hydrophobic
 membrane

Liquid Membrane Electrodes

- Principle of Ca²⁺ electrode is the same as for glass electrode, however, since Ca²⁺ is divalent n = 2 → Nernstian slope = 29.5 mV per 10 fold change in concentration
- Detection limit for Ca²⁺ is approx. 10⁻⁵ M
- Selectivity is:
 - Independent of pH from 5.5 to 11
 - 50 times better for Ca²⁺ than for Mg²⁺
 - 1000 times better for Ca²⁺ than Na⁺ or K⁺
- Other liquid membrane electrodes available

Response of calcium ion liquid membrane electrode

Table of liquid membrane electrodes

Analyte Ion	Concentration Range, M	Interferences
Ca ²⁺	10^0 to 5×10^{-7}	$\begin{array}{l} 10^{-5}Pb^{2+};4\times10^{-3}Hg^{2+},H^{+},6\times10^{-3}Sr^{2+};2\times10^{-2}Fe^{2+};4\times10^{-2}Cu^{2+};\\ 5\times10^{-2}Ni^{2+};0.2NH_3;0.2Na^+;0.3Tris^+;0.3Li^+;0.4K^+;0.7Ba^{2+};1.0Zn^{2+};\\ 1.0Mg^{2+}\end{array}$
BF_4^-	10^{0} to 7×10^{-6}	$5 \times 10^{-7} \text{ ClO}_{4}^{-}; 5 \times 10^{-6} \text{ I}^{-}; 5 \times 10^{-5} \text{ ClO}_{3}^{-}; 5 \times 10^{-4} \text{ CN}^{-}; 10^{-3} \text{ Br}^{-};$ $10^{-3} \text{ NO}_{2}^{-}; 5 \times 10^{-3} \text{ NO}_{3}^{-}; 3 \times 10^{-3} \text{ HCO}_{3}^{-}; 5 \times 10^{-2} \text{ Cl}^{-}; 8 \times 10^{-2} \text{ H}_2\text{PO}_{4}^{-},$ $\text{HPO}_{4}^{2-}, \text{PO}_{4}^{3-}; 0.2 \text{ OAc}^{-}; 0.6 \text{ F}^{-}; 1.0 \text{ SO}_{4}^{2-}$
NO ₃	10^0 to 7×10^{-6}	10^{-7} ClO_4^- ; 5 × 10 ⁻⁶ I ⁻ ; 5 × 10 ⁻⁵ ClO ₃ ^-; 10 ⁻⁴ CN ⁻ ; 7 × 10 ⁻⁴ Br ⁻ ; 10 ⁻³ HS ⁻ ; 10 ⁻² HCO ₃ ^-; 2 × 10 ⁻² CO ₃ ²⁻ ; 3 × 10 ⁻² Cl ⁻ ; 5 × 10 ⁻² H ₂ PO ₄ ⁻ , HPO ₄ ²⁻ , PO ₄ ³⁻ ; 0.2 OAc ⁻ ; 0.6 F ⁻ ; 1.0 SO ₄ ²⁻
ClO_4^-	10^0 to $7 imes 10^{-6}$	$2 \times 10^{-3} \text{ I}^-$; $2 \times 10^{-2} \text{ ClO}_3^-$; $4 \times 10^{-2} \text{ CN}^-$, Br^- ; $5 \times 10^{-2} \text{ NO}_2^-$, NO_3^- ; 2 HCO_3^- , $\text{CO}_3^{2^-}$, Cl^- , H_2PO_4^- , $\text{HPO}_4^{2^-}$, $\text{PO}_4^{3^-}$, OAc^- , F^- , $\text{SO}_4^{2^-}$
K+	10^{0} to 10^{-6}	$3 \times 10^{-4} \text{Cs}^+$; $6 \times 10^{-3} \text{NH}_4^+$, Tl^+ ; 10^{-2}H^+ ; 1.0Ag^+ , Tris^+ ; 2.0Li^+ , Na^+
Water Hardness (Ca ²⁺ + Mg ²⁺)	10^{-3} to 6×10^{-6}	$3 \times 10^{-5} \text{ Cu}^{2+}, \text{Zn}^{2+}; 10^{-4} \text{ Ni}^{2+}; 4 \times 10^{-4} \text{ Sr}^{2+};$ $6 \times 10^{-5} \text{ Fe}^{2+}; 6 \times 10^{-4} \text{ Ba}^{2+}; 3 \times 10^{-2} \text{ Na}^+; 0.1 \text{ K}^+$

Solid State Membrane Electrodes

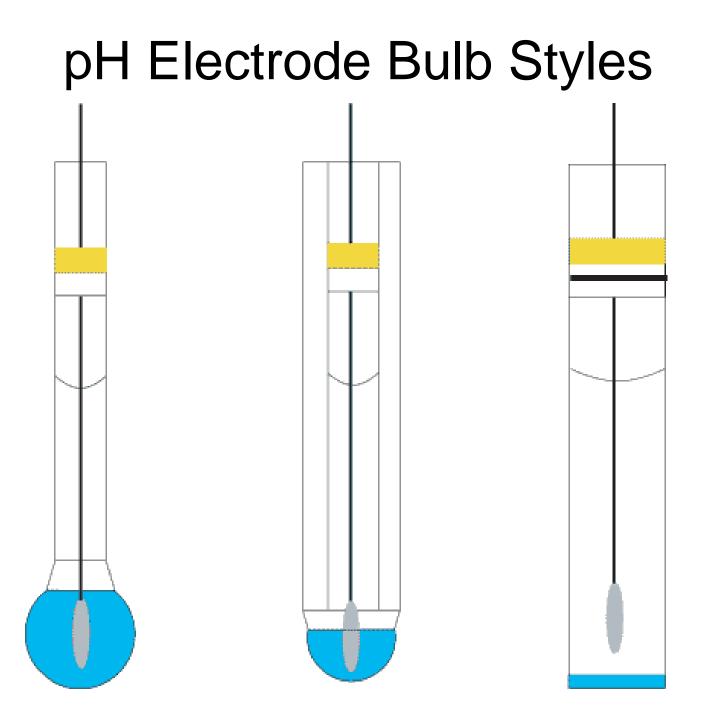
Ag wire Filling solution with fixed * [Cl-] and cation that electrode responds to Ag/AgCl Solid state membrane (must be ionic conductor)

Solid State Membrane Chemistry				
Membrane	Ion Determined			
LaF ₃	F⁻, La ³⁺			
AgCl	Ag⁺, Cl⁻			
AgBr	Ag⁺, Br⁻			
Agl	Ag⁺, I⁻			
Ag ₂ S	Ag+, S ²⁻			
$Ag_2S + CuS$	Cu ²⁺			
$Ag_2S + CdS$	Cd ²⁺			
$Ag_2S + PbS$	Pb ²⁺			

Solid State Membrane Electrodes

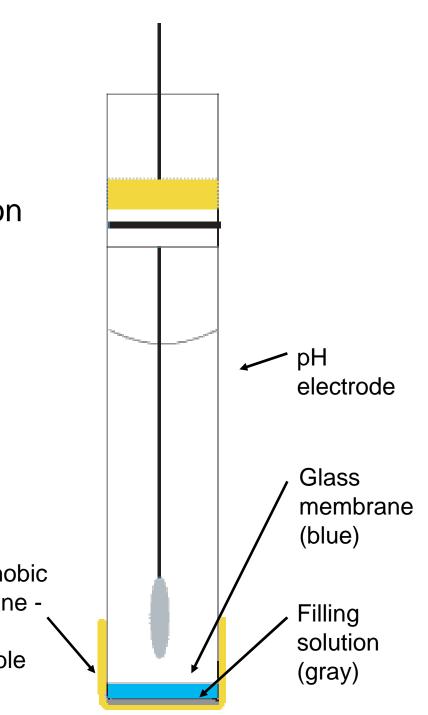
- Detection limits depend on solubility of the solid state membrane
- K_{sp} for AgCI = approx. 10⁻¹⁰
- Therefore solubility is 10⁻⁵ M or membrane starts to produce ions of interest in solution
- Mixed crystals improve this somewhat but it is still a limitation
- Interferences or poisoning by high affinity ions
- Can polish electrodes to remove fouling
- Selectivity coefficient = electrode response ratio

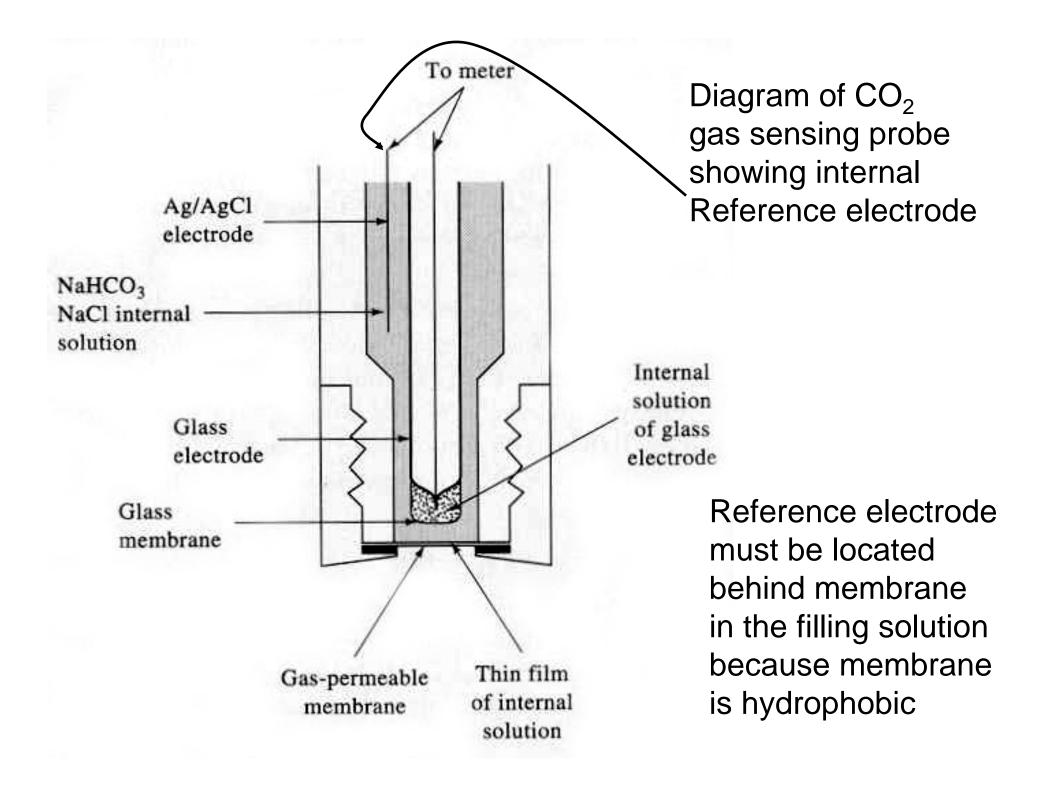
Commercially Available Solid State Ion Selective Electrodes (ISEs)


Analyte Ion	Concentration Range, M	Interferences
Br-	10^0 to $5 imes 10^{-6}$	mr: 8×10^{-5} CN ⁻ ; 2×10^{-4} I ⁻ ; 2 NH ₃ ; 400 Cl ⁻ ; 3×10^{4} OH ⁻ . mba: S ²⁻
Cd ²⁺	10^{-1} to 10^{-7}	Fe ²⁺ + Pb ²⁺ may interfere. mba: Hg ²⁺ , Ag ⁺ , Cu ²⁺
Cl-	10^0 to $5 imes 10^{-5}$	mr: 2×10^{-7} CN ⁻ ; 5×10^{-7} I ⁻ ; 3×10^{-3} Br ⁻ ; 10^{-2} S ₂ O ₃ ²⁻ ; 0.12 NH ₃ ; 80 OH ⁻ . mba: S ²⁻
Cu ²⁺	10^{-1} to 10^{-8}	high levels Fe ²⁺ , Cd ²⁺ , Br ⁻ , Cl ⁻ . mba: Hg ²⁺ , Ag ⁺ , Cu ⁺
CN-	10^{-2} to 10^{-6}	mr: 10^{-1} I ⁻ ; 5 × 10 ³ Br ⁻ ; 10 ⁶ Cl ⁻ . mba: S ²⁻
F-	sat'd to 10^{-6}	0.1 M OH ⁻ gives $<10\%$ interference when [F ⁻] = 10^{-3} M
I-	10^0 to $5 imes 10^{-8}$	mr: 0.4 CN ⁻ ; 5 × 10 ³ Br ⁻ ; 10 ⁵ S ₂ O ₃ ²⁻ ; 10 ⁶ Cl ⁻
Pb ²⁺	10^{-1} to 10^{-6}	mba: Hg ²⁺ , Ag ⁺ , Cu ²⁺
Ag ⁺ /S ²⁻	10^{0} to 10^{-7} Ag ⁺ 10^{0} to 10^{-7} S ²⁻	Hg ²⁺ must be less than 10 ⁻⁷ M
SCN-	10^0 to $5 imes 10^{-6}$	mr: 10^{-6} I ⁻ ; 3×10^{-3} Br ⁻ ; 7×10^{-3} CN ⁻ ; 0.13 S ₂ O ₃ ²⁻ ; 20 Cl ⁻ ; 100 OH ⁻ . mba: S ²⁻

mr = maximum ratio of interferent to analyte mba = must be absent

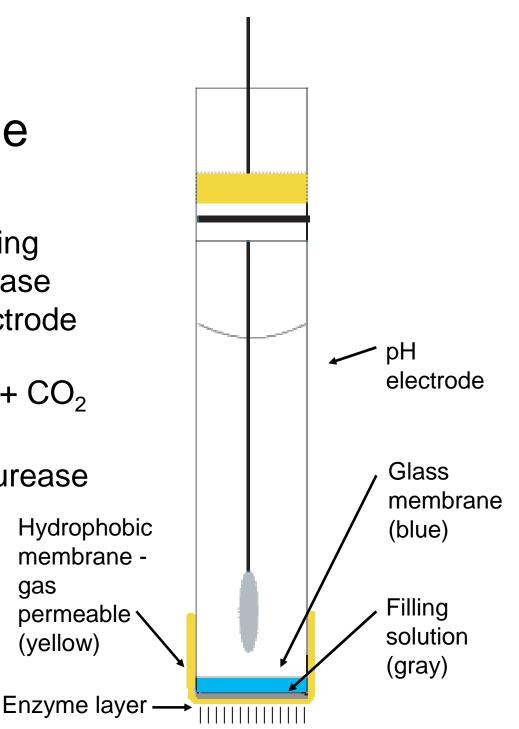
Permeable Membrane Electrodes Gas Permeable Membrane Electrodes Gas Sensing Electrodes


- Membrane that is permeable to a gas (e.g., NH₃) is the key component of electrode
- Membrane is part of a small chamber which encloses a filling solution with a pH electrode housed inside
- Filling solution has "fixed" [NH₄+] which responds to changes in [NH₃] passing membrane according to


$$NH_3 + H_2O \implies NH_4^+ + OH^-$$

Gas Permeable Membrane Electrodes

- Electrode immersed in test solution
- NH₃ diffuses through membrane
- NH_3 in test solution equilibrates with NH_3 in filling solution


Commercial Gas Sensing Electrodes

Gas	Equilibrium in Internal Solution	Sensing Electrode
NH3	$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	Glass, pH
CO ₂	$CO_2 + H_2O \rightleftharpoons HCO_3 - H^+$	Glass, pH
HCN	$HCN \rightleftharpoons H^+ + CN^-$	Ag_2S , pCN
HF	$HF \rightleftharpoons H^+ + F^-$	LaF ₃ , pF
H ₂ S	$H_2S \rightleftharpoons 2H^+ + S^{2-}$	Ag_2S , pS
SO ₂	$SO_2 + H_2O \rightleftharpoons HSO_3 - H^+$	Glass, pH
NO ₂	$2NO_2 + H_2O \rightleftharpoons NO_2 + NO_3 + 2H^+$	Immobilized ion exchange, pNO ₃

Enzyme Electrode e.g., Urea Electrode

An electrode sensitive to urea can be prepared by immobilizing a thin layer of the enzyme urease on the surface of the NH₃ electrode OH₂N-C-NH₂ + H₂O \longrightarrow 2 NH₃ + CO₂

Urea comes in contact with urease immobilized on the surface
 Urea is broken down to NH₃
 & CO₂ in this enzyme layer
 -NH₃ diffuses through
 membrane to give response

Potentiometry - Conclusion

- Electrochemical (galvanic) cell with essentially no current flow
- Requires a solution that is conductive i.e., contains a "supporting electrolyte"
- Laboratory pH/millivolt meters should be capable of measuring <u>+</u> 0.1 mV
- This corresponds to 0.4 x n % uncertainty
- Electrodes measure activity not concentration
- Measure "free" or uncomplexed ions not total

Voltammetry

- Methods based on an electrolytic cell
- Apply potential or current to electrochemical cell & concentrations change at electrode surface due to oxidation & reduction reactions
- Can have 2 or 3 electrodes
- Stirred or unstirred solution
- Measure current or voltage

- In all electrochemical methods, the rate of oxidation & reduction depend on:
 - 1) rate & means by which soluble species reach electrode surface (mass transport)
 - 2) kinetics of the electron transfer process at electrode surface (electrode kinetics), which depend on:
 - a) nature of the reaction
 - b) nature of electrode surface
 - c) temperature

(we don't have much control over #2)

Mass Transport or Mass Transfer

1) Migration – movement of a charged particle in a potential field – generally bad (important for conductance & electrophoresis) In most cases migration is undesirable and can be eliminated by adding a 100 fold excess of an inert electrolyte (i.e., electrochemically inert - not oxidized or reduced) Inert electrolyte does the migrating, not the analyte

Mass Transport or Mass Transfer

2) Diffusion – movement due to a concentration gradient. If electrochemical reaction depletes (or produces) some species at the electrode surface, then a concentration gradient develops and the electroactive species will tend to diffuse from the bulk solution to the electrode (or from the electrode out into the bulk solution)