84.314 Analytical Chemistry II (Instrumental Analysis)

Dr. David K. Ryan Department of Chemistry University of Massachusetts Lowell

List Price \$162 UML Bookstore \$162 Internet as low as \$85 ? Fifth edition 1998 Sixth ed. just out 2007 Excellent reference book

Website

http://faculty.uml.edu/David_Ryan/84.314/

- Syllabus = course description
- Schedule
- Materials = Lecture Slides, Handouts, Scanned Chapters

Skoog – Chapter 1 Introduction

Basics of Instrumental Analysis

- Properties Employed in Instrumental Methods
- Numerical Criteria
- Figures of Merit

TABLE 1-1 Chemical and Physical Properties Employed in Instrumental Methods			
Characteristic Properties	Instrumental Methods		
Emission of radiation	Emission spectroscopy (X-ray, UV, visible, electron, Auger); fluorescence, phosphorescence, and luminescence (X-ray, UV, and visible)		
Absorption of radiation	Spectrophotometry and photometry (X-ray, UV, visible, IR); photoacoustic spectroscopy; nuclear magnetic resonance and electron spin resonance spectroscopy		
Scattering of radiation	Turbidimetry; nephelometry; Raman spectroscopy		
Refraction of radiation	Refractometry; interferometry		
Diffraction of radiation	X-Ray and electron diffraction methods		
Rotation of radiation	Polarimetry; optical rotary dispersion; circular dichroism		
Electrical potential	Potentiometry; chronopotentiometry		
Electrical charge	Coulometry		
Electrical current	Amperometry; polarography		
Electrical resistance	Conductometry		
Mass	Gravimetry (quartz crystal microbalance)		
Mass-to-charge ratio	Mass spectrometry		
Rate of reaction	Kinetic methods		
Thermal characteristics	Thermal gravimetry and titrimetry; differential scanning colorimetry; differential thermal analyses; thermal conductometric methods		
Radioactivity	Activation and isotope dilution methods		

TABLE 1-3 Numerical Criteria for Selecting Analytical Methods			
Criterion	Figure of Merit		
1. Precision	Absolute standard deviation, relative standard deviation, coefficient of variation, variance		
2. Bias	Absolute systematic error, relative systematic error		
3. Sensitivity	Calibration sensitivity, analytical sensitivity		
4. Detection limit (LOD)	Blank plus three times standard deviation of a blank		
5. Concentration range	Concentration limit of quantitation (LOQ) to concentration limit of linearity (LOL)		
6. Selectivity	Coefficient of selectivity		

TABLE 1-4Other Characteristicsto Be Consideredin Method Choice

- 1. Speed
- 2. Ease and convenience
- 3. Skill required of operator
- 4. Cost and availability of equipment
- 5. Per-sample cost

TABLE 1-5 Figures of Merit for Precision of Analytical Methods		
Terms	Definition*	
Absolute standard deviation, s	$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$	
Relative standard deviation (RSD)	$RSD = \frac{s}{\overline{x}}$	
Standard deviation of the mean, s_m	$s_m = s/\sqrt{N}$	
Coefficient of variation, CV	$CV = \frac{s}{x} \times 100\%$	
Variance	s ²	
$*x_i =$ numerical value of the <i>i</i> th measureme	ent.	

 $\bar{x} = \text{mean of } N \text{ measurements} = \frac{\sum_{i=1}^{N} x_i}{N}$

Skip the following chapters

- <u>Chapter 2</u> Electrical Components and Circuits
- <u>Chapter 3</u> Operational Amplifiers in Chemical Instrumentation
- <u>Chapter 4</u> Digital Electronics and Microcomputers

Skoog – Chapter 5 Signals and Noise

Signal to Noise Ratio All instrumental measurements involve a signal Unfortunately all signals have noise present Sometimes the noise is large Sometimes it is so small you can't see it

Current measurements (a) with noise, (b) with noise averaged out

Noise is often constant and independent of signal

Signal to Noise Ratio (S/N)

- Parameter describing quality of data
- > Often referred to as "figure of merit"
- S mean of signal x 1 N standard deviation s RSD

RSD = relative standard deviation

Sources of Noise

- <u>Chemical noise</u> temp, pressure, humidity, etc. fluctuations = uncontrolled variables
- Instrumental noise noise from instrumental components
 - Thermal noise (Johnson noise) thermal motion of electrons in load resistor

$$v_{\rm rms} = \sqrt{4 \, \mathrm{k} \, \mathrm{T} \, \mathrm{R} \, \Delta \mathrm{f}}$$

Thermal noise

$$v_{rms} = \sqrt{4 \text{ k T R } \Delta f}$$

 v_{rms} = root mean square noise voltage k = Boltzmann constant 1.38 x 10⁻²³ J/K

- T = temperature
- R = resistance
- Δf = frequency bandwidth of noise

Instrumental noise

 Shot noise – movement of electrons across a junction

$$i_{rms} = \sqrt{2ie\Delta f}$$

i_{rms} = root-mean square current fluctuation

- i = average current
- e = charge on electron

 $\Delta f = frequency bandwidth$

Instrumental noise

- Flicker noise any noise that is inversely proportional to signal 1/f
- Significant at low frequency (<100 Hz)
- Environmental noise composite of many noise sources

e.g. any electrical device gives off

- EM (electromagnetic radiation)
- ELF radiation = health controversy instruments may pick up signals

Environmental noise sources (note frequency dependence)

Improving S/N hardware & software

Hardware

- Grounding & shielding Faraday cage
- Analog filtering RC filtering
- Modulation convert DC signal to high frequency AC then demodulate
- Signal chopping rotating wheel to differentiate e.g. IR source from heat
- Lock-in amplifiers

<u>22</u>

Modulation

Signal chopping in an IR spectrophotometer

Chopper amplifier

Improving S/N hardware & software

Software

- Ensemble averaging adding spectra
- Boxcar averaging –
- Digital filtering moving window, sliding average
- Correlation methods

Ensemble averaging i.e. adding or averaging signal

Boxcar averaging