Membrane Electrodes

- Several types Glass membrane electrode
 Solid State " "
 - Liquid Junction "
 - Permeable ""
- Most important is glass electrode for pH

Glass pH Electrode

- E = K' 0.0591 pH
- Combine with reference electrode and meter
- Half cell voltage proportional to pH
- Nernstian slope
- Intercept is K', no E^o
- Calibrate with buffers

Proper pH Calibration

- E = K' 0.0591 pH
- Meter measures E vs pH must calibrate both slope & intercept on meter with buffers
- Meter has two controls calibrate & slope
- 1st use pH 7.00 buffer to adjust calibrate knob

Calibrate knob raises and lowers the line without changing slope

Proper pH Calibration (cont.)

- 2nd step is to use any other pH buffer
- Adjust slope/temp control to correct pH value
- This will pivot the calibration line around the isopotential which is set to 7.00 in all meters

Slope/temp control pivots line around isopotential without changing it

- Slope comes from RT/nF in Nernst Equation
- Slope is temperature sensitive
- Other factors influence slope including
 - Impurities in glass membrane
 - Overall quality of electrode construction
- Many electrodes exhibit "full Nernstian response" while others may give only 90%

Cell for pH measurement (shorthand notation)

$$Ag_{(s)} |AgCI_{(s)}| CI_{(aq)} ||H^{+}_{unk} ||HCI(0.1M)| AgCI_{(sat'd)} |Ag_{(s)}|$$

- pH measurements are only as good as the buffers used to calibrate
 - Accuracy good to +0.01 units*
 - Precision may be good to ± 0.001 units
- Junction potential dependent on ionic strength of solution – E_j may be a significant error if test solution has different ionic strength than buffers
- * Unless using special buffers, temp. control & a Faraday cage

 Asymmetry potential is another non-ideal potential that arises possibly from strain in the glass. When both internal & external H⁺ solutions are the same activity, potential should be 0 but it's not

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}_{\mathsf{ind}} - \mathsf{E}_{\mathsf{ref}} + \mathsf{E}_{\mathsf{j}} + \mathsf{E}_{\mathsf{a}}$$

 Temperature of electrodes, calibration buffers and sample solutions must be the same primarily because of T in Nernst Eq. ATC probes are available for many meters

 Alkaline Error or Sodium Error occurs when pH is very high (e.g., 12) because Na⁺ concentration is high (from NaOH used to raise pH) and H⁺ is very low. Electrode responds slightly to Na⁺ & gives a lower reading than actual pH. This is related to the concept of selectivity coefficients where the electrode responds to many ions but is most selective for H⁺. Problem occurs because Na⁺ is 10 orders of magnitude higher than H⁺ in the solution.

- Acid Error electrode reads slightly higher than the actual pH in very acidic solutions (not well understood)
- Response Time related to activity for all potentiometric electrodes & is fast at high activity (concentration) & slow at low conc.
- Hydration of Glass Surface glass electrodes must be kept hydrated for good measurement & must be rehydrated for 24 hrs if it dries out – will cause noisy readings

Glass Electrode Summary

- Glass membrane electrodes are very good indicator electrodes in potentiometry
- Must exercise care in calibration and in maintaining integrity of glass membrane
- Some errors exist & are unavoidable
- Glass electrodes available for Na⁺, K⁺, NH₄⁺, Rb⁺, Cs⁺, Li⁺, Ag⁺ (cations only) by varying glass composition
- Combination electrodes combine pH & ref.

Combination pH Electrode

Liquid Membrane Electrodes

- Calcium Electrode is good example
- Liquid ion exchanger

 water immiscible
 organic compound
 with phosphate
 groups selective for
 Ca²⁺ in a hydrophobic
 membrane

Liquid Membrane Electrodes

- Principle of Ca²⁺ electrode is the same as for glass electrode, however, since Ca²⁺ is divalent n = 2 → Nernstian slope = 29.5 mV per 10 fold change in concentration
- Detection limit for Ca²⁺ is approx. 10⁻⁵ M
- Selectivity is:
 - Independent of pH from 5.5 to 11
 - 50 times better for Ca²⁺ than for Mg²⁺
 - 1000 times better for Ca²⁺ than Na⁺ or K⁺
- Other liquid membrane electrodes available

Response of calcium ion liquid membrane electrode

Table of liquid membrane electrodes

Analyte Ion	Concentration Range, M	Interferences
Ca ²⁺	10^0 to 5×10^{-7}	$\begin{array}{l} 10^{-5}\text{Pb}^{2+};4\times10^{-3}\text{Hg}^{2+},\text{H}^{+},6\times10^{-3}\text{Sr}^{2+};2\times10^{-2}\text{Fe}^{2+};4\times10^{-2}\text{Cu}^{2+};\\ 5\times10^{-2}\text{Ni}^{2+};0.2\text{NH}_3;0.2\text{Na}^+;0.3\text{Tris}^+;0.3\text{Li}^+;0.4\text{K}^+;0.7\text{Ba}^{2+};1.0\text{Zn}^{2+};\\ 1.0\text{Mg}^{2+}\end{array}$
BF_4^-	10^0 to 7×10^{-6}	$5 \times 10^{-7} \text{ ClO}_4^-$; $5 \times 10^{-6} \text{ I}^-$; $5 \times 10^{-5} \text{ ClO}_3^-$; $5 \times 10^{-4} \text{ CN}^-$; 10^{-3} Br^- ; 10^{-3} NO_2^- ; $5 \times 10^{-3} \text{ NO}_3^-$; $3 \times 10^{-3} \text{ HCO}_3^-$; $5 \times 10^{-2} \text{ Cl}^-$; $8 \times 10^{-2} \text{ H}_2\text{PO}_4^-$, HPO_4^{2-} , PO_4^{3-} ; 0.2 OAc^- ; 0.6 F^- ; 1.0 SO_4^{2-}
NO ₃	10^0 to 7×10^{-6}	10^{-7} ClO_4^- ; 5 × 10 ⁻⁶ I ⁻ ; 5 × 10 ⁻⁵ ClO ₃ ^-; 10 ⁻⁴ CN ⁻ ; 7 × 10 ⁻⁴ Br ⁻ ; 10 ⁻³ HS ⁻ ; 10 ⁻² HCO ₃ ^-; 2 × 10 ⁻² CO ₃ ^{2⁻} ; 3 × 10 ⁻² Cl ⁻ ; 5 × 10 ⁻² H ₂ PO ₄ ⁻ , HPO ₄ ^{2⁻, PO₄^{3⁻}; 0.2 OAc⁻; 0.6 F⁻; 1.0 SO₄^{2⁻}}
ClO ₄	10^0 to $7 imes 10^{-6}$	$2 \times 10^{-3} \text{ I}^-$; $2 \times 10^{-2} \text{ ClO}_3^-$; $4 \times 10^{-2} \text{ CN}^-$, Br^- ; $5 \times 10^{-2} \text{ NO}_2^-$, NO_3^- ; 2 HCO ₃ ⁻ , CO ₃ ²⁻ , Cl ⁻ , H ₂ PO ₄ ⁻ , HPO ₄ ²⁻ , PO ₄ ³⁻ , OAc ⁻ , F ⁻ , SO ₄ ²⁻
K+	10^{0} to 10^{-6}	$3 \times 10^{-4} \text{Cs}^+; 6 \times 10^{-3} \text{NH}_4^+, \text{Tl}^+; 10^{-2} \text{H}^+; 1.0 \text{Ag}^+, \text{Tris}^+; 2.0 \text{Li}^+, \text{Na}^+$
Water Hardness (Ca ²⁺ + Mg ²⁺)	10^{-3} to $6 imes 10^{-6}$	$3 \times 10^{-5} \text{ Cu}^{2+}, \text{Zn}^{2+}; 10^{-4} \text{ Ni}^{2+}; 4 \times 10^{-4} \text{ Sr}^{2+};$ $6 \times 10^{-5} \text{ Fe}^{2+}; 6 \times 10^{-4} \text{ Ba}^{2+}; 3 \times 10^{-2} \text{ Na}^+; 0.1 \text{ K}^+$

Solid State Membrane Electrodes

Ag wire Filling solution with fixed * [Cl-] and cation that electrode responds to Ag/AgCl Solid state membrane (must be ionic conductor)

Solid State Membrane Chemistry			
Membrane	Ion Determined		
LaF ₃	F⁻, La ³⁺		
AgCl	Ag⁺, Cl⁻		
AgBr	Ag⁺, Br⁻		
Agl	Ag⁺, I⁻		
Ag_2S	Ag+, S ²⁻		
$Ag_2S + CuS$	Cu ²⁺		
$Ag_2S + CdS$	Cd ²⁺		
$Ag_2S + PbS$	Pb ²⁺		

Solid State Membrane Electrodes

- Detection limits depend on solubility of the solid state membrane
- K_{sp} for AgCI = approx. 10⁻¹⁰
- Therefore solubility is 10⁻⁵ M or membrane starts to produce ions of interest in solution
- Mixed crystals improve this somewhat but it is still a limitation
- Interferences or poisoning by high affinity ions
- Can polish electrodes to remove fouling
- Selectivity coefficient = electrode response ratio

Commercially Available Solid State Ion Selective Electrodes (ISEs)

Analyte Ion	Concentration Range, M	Interferences
Br-	10^0 to $5 imes 10^{-6}$	mr: 8×10^{-5} CN ⁻ ; 2×10^{-4} I ⁻ ; 2 NH ₃ ; 400 Cl ⁻ ; 3×10^{4} OH ⁻ . mba: S ²⁻
Cd ²⁺	10^{-1} to 10^{-7}	Fe ²⁺ + Pb ²⁺ may interfere. mba: Hg ²⁺ , Ag ⁺ , Cu ²⁺
CI-	10^0 to $5 imes 10^{-5}$	mr: 2×10^{-7} CN ⁻ ; 5×10^{-7} I ⁻ ; 3×10^{-3} Br ⁻ ; 10^{-2} S ₂ O ₃ ²⁻ ; 0.12 NH ₃ ; 80 OH ⁻ . mba: S ²⁻
Cu ²⁺	10^{-1} to 10^{-8}	high levels Fe ²⁺ , Cd ²⁺ , Br ⁻ , Cl ⁻ . mba: Hg ²⁺ , Ag ⁺ , Cu ⁺
CN-	10^{-2} to 10^{-6}	mr: 10^{-1} I ⁻ ; 5 × 10 ³ Br ⁻ ; 10 ⁶ Cl ⁻ . mba: S ²⁻
F-	sat'd to 10 ⁻⁶	0.1 M OH ⁻ gives $<10\%$ interference when [F ⁻] = 10^{-3} M
I-	10^0 to $5 imes 10^{-8}$	mr: 0.4 CN ⁻ ; 5 × 10 ³ Br ⁻ ; 10 ⁵ S ₂ O ₃ ²⁻ ; 10 ⁶ Cl ⁻
Pb ²⁺	10^{-1} to 10^{-6}	mba: Hg ²⁺ , Ag ⁺ , Cu ²⁺
Ag ⁺ /S ²⁻	10^{0} to 10^{-7} Ag ⁺ 10^{0} to 10^{-7} S ²⁻	Hg^{2+} must be less than 10^{-7} M
SCN-	10^0 to $5 imes 10^{-6}$	mr: 10^{-6} I ⁻ ; 3×10^{-3} Br ⁻ ; 7×10^{-3} CN ⁻ ; 0.13 S ₂ O ₃ ²⁻ ; 20 Cl ⁻ ; 100 OH ⁻ . mba: S ²⁻

mr = maximum ratio of interferent to analyte mba = must be absent

Permeable Membrane Electrodes Gas Permeable Membrane Electrodes Gas Sensing Electrodes

- Membrane that is permeable to a gas (e.g., NH₃) is the key component of electrode
- Membrane is part of a small chamber which encloses a filling solution with a pH electrode housed inside
- Filling solution has "fixed" [NH₄+] which responds to changes in [NH₃] passing membrane according to

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$

Gas Permeable Membrane Electrodes

- Electrode immersed in test solution
- NH₃ diffuses through membrane
- NH_3 in test solution equilibrates with NH_3 in filling solution

