84.514 Advanced Analytical Chemistry

Part II Molecular Spectroscopy

Important Websites

<u>http://faculty.uml.edu/David_Ryan/84.514</u> <u>http://cord.org/step_online/introduction/contents.htm</u> <u>Spectroscopy</u> = methods based on the interaction of electromagnetic radiation (EM) and matter

<u>Electromagnetic Radiation</u> = form of energy with both wave and particle properties

EM moves through space as a wave

Relationship between various wave properties

$$\nu \lambda_i = \frac{C}{\eta_i}$$

Where V = frequency in cycles/s or Hz

 λ_i = wavelength in medium i

- η_i = refractive index of medium i
- C = speed of light in vacuum (2.99 x 10^{10} cm/s)

EM slows down in media other than vacuum because electric vector interacts with electric fields in the medium (matter) → this effect is greatest in solids & liquids, in gases (air) velocity similar to vacuum

Normally η increases with ν and this is referred to as "Normal Dispersion"

- When absorption occurs, the nature of the interaction changes
- η is a measure of the extent to which the electric vector interacts with the medium & slows down
- For a given frequency and medium, a larger η means more interaction with electric field & the medium is said to have greater **polarizability** i.e., is more able to follow the electric vector

Variation in the Refractive index (η) with wavelength (λ) for several types of glass

Refractive indices (η) for various substances at 589 nm (the sodium D line)

Substance	η
air	1.00027
water, 20 °C	1.33336
NaCl crystal	1.544
benzene	1.501
quartz (fused)	1.46
glass (crown)	1.52
ethyl alcohol	1.36
carbon disulfide	1.63

<u>**Refraction</u> = change in velocity of EM as it goes from one medium to another**</u>

Equation for Refraction $\frac{\sin \Phi_1}{\sin \Phi_2} = \frac{\nu_1}{\nu_2} = \frac{\eta_2}{\eta_1} = \eta_2$ if medium 1 is air $\eta_1 = 1.0$

Magnitude of the direction change (i.e., size of the angle depends on wavelength (shown in equation as v) this is how a prism works

Direction of bending depends on relative values of η for each medium. Going from low η to higher, the ray bends toward the normal. Going from higher η to lower the ray bends away from the normal.

<u>Wave Interaction</u> - interaction between waves

- waves must have similar v but can be out of phase (i.e., they start in different places)
- Principle of superposition = vectors add
- wave y₁+y₂ formed by adding y₁ & y₂ by vector addition

Wave Equation

$$y = A \sin (\omega t + \alpha)$$

Where A = amplitude

- ω = angular frequency
- α = phase angle
 - t = time

For a collection of waves the resulting position y at a given t can be calculated by $y = A_1 \sin (\omega_1 t + \alpha_1) + A_2 \sin (\omega_2 t + \alpha_2) + \dots$

Interference - amplitude of the resulting wave depends on phase difference $\alpha_1 - \alpha_2$

At $\alpha_1 - \alpha_2 = 0^\circ$ adding of waves gives **Maximum Constructive Interference**

Resultant wave

Phase angle difference between Wave 1 & Wave 2 is zero $\alpha_1 - \alpha_2 = 0^\circ$

Also at $\alpha_1 - \alpha_2 = 360^\circ$ adding of waves gives <u>Maximum Constructive Interference</u>

When $\alpha_1 - \alpha_2 = 180^\circ$ or 540° adding of waves gives <u>Maximum Destructive Interference</u>

Fourier Analysis – mathematical process of resolving a combination of waves of various frequencies into their individual frequencies. This requires a Fourier integral and is important in all Fourier Transform (FT) methods like FTIR and FT NMR. Requires complex mathematics and a computer to figure out amplitudes of various component frequencies.

Diffraction = EM going past an edge or through a slit (2 edges) tends to spread

The combination of diffraction effects & interference effects are important in spectroscopy for 1)diffraction gratings 2) slit width considerations **Scattering** = EM interacts with matter and changes direction, usually without changing energy This can be described using both the wave or

particle nature of light:

- Wave EM induces oscillations in electrical charge of matter ⇒ resulting in oscillating dipoles which in turn radiate secondary waves in all directions = scattered radiation
- Particle (or Quantum) EM interacts with matter to form a virtual state (lifetime 10⁻¹⁴ s) which reemits in all directions.
- Raman effect = when some molecules return to a different state \Rightarrow change in frequency

Many types of scattering exist depending on several parameters characterizing the system, we will be concerned with: Rayleigh Scattering and Large Particle Scattering

Rayleigh Scattering – scattering by particles whose longest dimension is < 5 % to 10 % of λ with no change in observed frequency

Notice the fourth power dependence on wavelength meaning short wavelengths are scattered more efficiently \Rightarrow sky is blue

Polarizability (α) is measure of how well a given frequency induces a dipole in a substance

- α Tends to be large for large molecules (e.g., proteins)
- Large Particle Scattering particle dimensions < 10 $\% \lambda$ to 1.5 λ
- Applies in techniques like turbidimetry and nephelometry
- Large particles do not act as a point source & give rise to various interference phenomena
- Forward scatter becomes greater than back scatter