Spectra

- 1) Excitation Spectrum fluorescence or phosphorescence intensity (at fixed λ) as a function of excitation λ or absorption λ
- 2) Fluorescence Emission Spectrum fluorescence emission intensity vs. λ for a fixed excitation λ (= absorption λ , max.)
- 3) <u>Phosphorescence Emission Spectrum</u> phosphorescence emission intensity vs.
 λ for a fixed excitation λ (= absorption λ, max.)

Fluorescence and Phosphorescence spectra are at longer λ 's because the transition Δ from S₁ \rightarrow S_o or G is smaller than the absorption Δ from S_o (G) to some upper vibrational level of S₁

Degree of structure in fluorescence spectrum is due to the degree of solvation as discussed for absorption

The rigidity of the phenanthrene molecule and its inherent lack of interaction with the solvent also plays a role in spectrum

Spectra

 4) Excitation Emission Matrix (EEM) or <u>Total Luminescence Spectrum</u> – 3D plot of emission for all possible combinations of excitation λ and emission λ

EEMs represented as contour plots

FIGURE 3. Absorbance-corrected EEMs of PFAR (50 mg/L, pH 6.0) at different ionic strengths.

Spectra

5) <u>Synchronous Scan Spectrum</u> – record fluorescence intensity while scanning both excitation and emission λ , usually at a constant offset ($\Delta\lambda$)

Synchronous scans of natural organic matter with $\Delta\lambda$ = 25 nm at pH 4 & 9 (solid line) Fluorescence Efficiency or Quantum Yield (Φ_F) $\Phi_F = \frac{\text{Number of photons emitted}}{\text{Number of photons absorbed}}$

Fluorescence efficiency depends on the rate of fluorescence relative to the rates of other processes involving excited state deactivation

Clearly anything that affects any of the rates involved in photophysical processes will affect Φ_F

e.g. temperature increases cause a decrease in $\Phi_F \rightarrow$ higher temp increases K_{IC} which reduces Φ_F , K_F doesn't vary significantly with temp

$$\Phi_{\rm F} = \frac{{\rm K}_{\rm F}}{{\rm K}_{\rm F} + {\rm K}_{\rm IC} + {\rm K}_{\rm IS}}$$

Heating of solutions can be a problem with intense sources

Note dependence on $\Phi_{\rm F}$, $I_{\rm o}$, ϵ , b

- Inner Filter Effects if the absorbance of the sample is above 0.05, fluorescence intensity is decreased in two ways:
- 1) <u>Primary Inner Filter Effect</u> excitation energy is decreased by absorption at the λ of excitation which decreases fluorescence
- Secondary Inner Filter Effects emitted fluorescence is absorbed by the sample at the emission λ which also reduces the amount of fluorescence measured

The front part of the cell is illuminated more efficiently than the back part \rightarrow get less fluorescence from the back part of the cell

Inner Filter Effects – conclusions

- Inner filtering results in curved calibration curves
- Must know or measure absorbance at both the excitation and emission wavelengths
- Fluorescence is basically a trace technique having 1 - 3 orders of magnitude lower detection limits than absorbance
- Upper limit of fluorescence occurs around lower limit of absorbance (complimentary)
- Inner filtering is also called quenching

Excited State Chemistry – it should be recognized that an electronic excited state is a distinct chemical entity with its own chemical properties

Sometimes fluorescence & phosphorescence emission are complicated by things that the excited states do, e.g.:

 <u>Chemical Reactions</u> – the excited state can undergo chemical reactions that the ground state can't, e.g. dyes fade in sunlight → this is photochemistry → In chemical analysis, photodecomposition is a serious problem – rate of photodecomposition is proportional to number of excited states, i.e. source intensity

2) <u>Acid-Base Chemistry</u> – K_a for excited singlet state can differ by as much as 10^6 from K_a for ground state e.g. Phenol ground state $pK_a = 10.0$

excited singlet $pK_a = 4.00$

At pH's between 4 & 10 you see fluorescence characteristics of phenolate anion = good way to study excited state chemistry Effects of other solutes on excited state emission \rightarrow can promote radiationless return to ground state = quenching

1) Energy Transfer

$$^{1}A^{*} + Q \rightarrow A + {}^{1}Q^{*}$$

or
$${}^{1}A^{*} + Q \rightarrow {}^{1}\{AQ\}^{*}$$

Where A = Analyte (species of interest) which absorbs and Q = quencher ¹A* & ¹Q* designate first excited singlet & ¹{AQ}* = complex

Occurs by

a) Q absorbs the emission of A b) Collisional non-radiative transfer of energy \rightarrow obeys <u>Stern-Volmer Law</u>

- Two types of quenching are covered by the Stern-Volmer Equation:
- Static quenching where A & Q form a complex that doesn't emit (=dark complex)
- 2) Dynamic quenching collisional Both represented as ${}^{1}A^{*} + Q \rightarrow {}^{1}\{AQ\}^{*}$ (increased rate of radiationless deactivation K_{IC})

Fluorescence Quenching of Fulvic Acid, $Q = Cu^{2+}$

The Ryan Equation

1:1 Complex Formation

M + L = ML [ML] K = ------[M] [L]

Where M = metal ion; L = ligand; ML = complex

Equations for Fitting Data

Equation for One Site Binding

 $I=[200+2KI_{RES}C_{M}-I_{RES}[(KC_{L}+KC_{M}+1)-((KC_{L}+KC_{M}+1)^{2}-4K^{2}C_{M}C_{L})^{0.5}]] / [2+2KC_{M}-[(KC_{L}+KC_{M}+1)-((KC_{L}+KC_{M}+1)^{2}-4K^{2}C_{L}C_{M})^{0.5}]]$

Equations for Two Site Binding

 $C_{M} = [M] + (K_{1}C_{L1}[M]/K_{1}[M] + 1) + (K_{2}C_{L2}[M]/K_{2}[M] + 1) + \dots + K_{n}C_{Ln}[M]/K_{n}[M] + 1$

 $K_{1}K_{2}[M]^{3} + \{K_{1}K_{2}(C_{L1}+C_{L2}-C_{M}) + K_{1} + K_{2}\}[M]^{2} + \{C_{L1}K_{1}+K_{2}C_{L2}-C_{M}(K_{1}+K_{2}+1)\}[M] - C_{M} = 0$

Fluorescence Quenching Curves

Hays, 1996

Fluorescence binding curves for Cu, Co, Mn & Al at pH values of 5-8

Fluorescence Enhancement

Emission Wavelength in nm with 360 nm Excitation

Fluorescence Intensity Arbitrary Units

Fluorescence Enhancement

Emission Wavelength in nm with 340 nm Excitation

Excitation Emission Matrix

15 mg/L Fulvic Acid at pH 4 with no Al(III)

Excitation Emission Matrix

15 mg/L Fulvic Acid at pH 4 with AI(III)

Fluorescence Enhancement Curve with One-Site Model

Fluorescence Enhancement Curve with Two-Site Model

Individual Fluorescence Intensities Making Up the Overall "I"

$\mathbf{I} = \mathbf{I}_{L1} + \mathbf{I}_{ML1} + \mathbf{I}_{L2} + \mathbf{I}_{ML2}$