Excited State Chemistry – it should be recognized that an electronic excited state is a distinct chemical entity with its own chemical properties

Sometimes fluorescence & phosphorescence emission are complicated by things that the excited states do, e.g.:

 <u>Chemical Reactions</u> – the excited state can undergo chemical reactions that the ground state can't, e.g. dyes fade in sunlight → this is photochemistry → In chemical analysis, photodecomposition is a serious problem – rate of photodecomposition is proportional to number of excited states, i.e. source intensity

2) <u>Acid-Base Chemistry</u> –  $K_a$  for excited singlet state can differ by as much as  $10^6$ from  $K_a$  for ground state e.g. Phenol ground state  $pK_a = 10.0$ 

excited singlet  $pK_a = 4.00$ 

At pH's between 4 & 10 you see fluorescence characteristics of phenolate anion = good way to study excited state chemistry Effects of other solutes on excited state emission  $\rightarrow$  can promote radiationless return to ground state = quenching

1) Energy Transfer

$$^{1}A^{*} + Q \rightarrow A + {}^{1}Q^{*}$$

or 
$${}^{1}A^{*} + Q \rightarrow {}^{1}\{AQ\}^{*}$$

Where A = Analyte (species of interest) which absorbs and Q = quencher <sup>1</sup>A\* & <sup>1</sup>Q\* designate first excited singlet & <sup>1</sup>{AQ}\* = complex

Occurs by

a) Q absorbs the emission of A b) Collisional non-radiative transfer of energy  $\rightarrow$  obeys <u>Stern-Volmer Law</u>



- Two types of quenching are covered by the Stern-Volmer Equation:
- Static quenching where A & Q form a complex that doesn't emit (=dark complex)
- 2) Dynamic quenching collisional Both represented as  ${}^{1}A^{*} + Q \rightarrow {}^{1}\{AQ\}^{*}$ (increased rate of radiationless deactivation K<sub>IC</sub>)

#### Fluorescence Quenching of Fulvic Acid, $Q = Cu^{2+}$







# **The Ryan Equation**



### **1:1 Complex Formation**

# M + L = ML [ML] K = ------[M] [L]

Where M = metal ion; L = ligand; ML = complex

### **Equations for Fitting Data**

**Equation for One Site Binding** 

 $I=[200+2KI_{RES}C_{M}-I_{RES}[(KC_{L}+KC_{M}+1)-((KC_{L}+KC_{M}+1)^{2}-4K^{2}C_{M}C_{L})^{0.5}]] / [2+2KC_{M}-[(KC_{L}+KC_{M}+1)-((KC_{L}+KC_{M}+1)^{2}-4K^{2}C_{L}C_{M})^{0.5}]]$ 

**Equations for Two Site Binding** 

 $C_{M} = [M] + (K_{1}C_{L1}[M]/K_{1}[M] + 1) + (K_{2}C_{L2}[M]/K_{2}[M] + 1) + \dots + K_{n}C_{Ln}[M]/K_{n}[M] + 1$ 

 $K_{1}K_{2}[M]^{3} + \{K_{1}K_{2}(C_{L1}+C_{L2}-C_{M}) + K_{1} + K_{2}\}[M]^{2} + \{C_{L1}K_{1}+K_{2}C_{L2}-C_{M}(K_{1}+K_{2}+1)\}[M] - C_{M} = 0$ 

#### Fluorescence Quenching Curves



Hays, 1996



Fluorescence binding curves for Cu, Co, Mn & Al at pH values of 5-8

### Fluorescence Enhancement



Emission Wavelength in nm with 360 nm Excitation

Fluorescence Intensity Arbitrary Units

## Fluorescence Enhancement



Emission Wavelength in nm with 340 nm Excitation

### **Excitation Emission Matrix**



15 mg/L Fulvic Acid at pH 4 with no Al(III)

### **Excitation Emission Matrix**



15 mg/L Fulvic Acid at pH 4 with AI(III)

# Fluorescence Enhancement Curve with One-Site Model



# Fluorescence Enhancement Curve with Two-Site Model



### Individual Fluorescence Intensities Making Up the Overall "I"

# $\mathbf{I} = \mathbf{I}_{L1} + \mathbf{I}_{ML1} + \mathbf{I}_{L2} + \mathbf{I}_{ML2}$

### Hypothetical Fluorescence Intensity Curves Showing Component Intensities



c) Long range radiative transfer  ${}^{1}A^{*} + Q \rightarrow A + {}^{1}Q^{*}$ 

### Absorption spectrum of acceptor must overlap the fluorescence spectrum of donor



The solution to this problem (i.e. loss of energy) is to reduce the level of Q  $\rightarrow$  usually < 10<sup>-4</sup> M is satisfactory

2) Oxygen quenching is also a problem (sometimes degas a solution to see if F goes up)

Another excited state process is <u>**eximer**</u> formation  $\rightarrow$  an excited state dimer  ${}^{1}A^{*} + A \rightarrow AA^{*} \rightarrow AA + h_{V} \leftarrow {}^{\text{emission shifted}}_{\text{to longer }\lambda}$ 

Heavy Atom Effect – atoms with high atomic number cause spin selection rules to be less rigidly obeyed → promotes IS at the expense of fluorescence

Observed if heavy atom is internal (in molecule) or external (in solvent)

Solvent Effects – essentially the same as for absorption  $\rightarrow$  for  $\pi$ - $\pi^*$  transitions  $\rightarrow$  increase solvent polarity  $\rightarrow$  excited state stabilized relative to ground state  $\rightarrow$  smaller  $\Delta E \rightarrow \lambda_{max}$ shifts to longer  $\lambda$ 

Also that larger  $\epsilon \rightarrow \text{larger } K_F$  (rate of fluorescence)

1) Nature of Transition -  $\pi$ - $\pi^*$  vs. n- $\pi^*$ Previously stated  $\pi$ - $\pi^* \rightarrow$  large  $\epsilon$  (i.e. probable) Therefore large K<sub>F</sub>  $\rightarrow$  large  $\Phi_F$  generally e.g. PAHs are efficient fluorophores

n-π<sup>\*</sup> → small ε → small K<sub>F</sub>,small Φ<sub>F</sub> (longer  $\tau_F$ ) e.g. carbonyls rarely fluoresce efficiently

Fluorescence only observed for compounds with an extended π-electron system.
Saturated aliphatics don't fluoresce
Mainly aromatics

1) Effect of Conjugation – similar to UV-vis More conjugation  $\rightarrow \lambda_{max}$  shifts to longer  $\lambda \& \varepsilon$ increases  $\rightarrow \lambda_F$  shifts to longer  $\lambda \& \Phi_F$ 

increases



has  $\Phi_F = 1.0$ 

3) Effect of structural rigidity - more rigid  $\rightarrow$ less interaction with solvent  $\rightarrow$  smaller  $K_{IC} \rightarrow$  higher  $\Phi_{F}$ 





4) Heavy atom effect  $\rightarrow$  higher K<sub>IS</sub>  $\rightarrow$  smaller  $\Phi_F$   $\bigcirc$  Internal

External – no fluorescence in ethyl iodide

### 5) Effect of Substitution

Effect of Substitution on the Fluorescence of Benzene

| Compound      | Formula                                                     | Wavelength of<br>Fluorescence, nm | Relative Intensity<br>of Fluorescence |
|---------------|-------------------------------------------------------------|-----------------------------------|---------------------------------------|
| Benzene       | C <sub>6</sub> H <sub>6</sub>                               | 270-310                           | 10                                    |
| Toluene       | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub>               | 270-320                           | 17                                    |
| Propylbenzene | C <sub>6</sub> H <sub>5</sub> C <sub>3</sub> H <sub>7</sub> | 270-320                           | 17                                    |
| Fluorobenzene | C <sub>6</sub> H <sub>5</sub> F                             | 270-320                           | 10                                    |
| Chlorobenzene | C <sub>6</sub> H <sub>5</sub> Cl                            | 275-345                           | 7                                     |
| Bromobenzene  | C <sub>6</sub> H <sub>5</sub> Br                            | 290-380                           | 5                                     |
| Iodobenzene   | C <sub>6</sub> H <sub>5</sub> I                             | -                                 | 0                                     |
| Phenol        | C <sub>6</sub> H <sub>5</sub> OH                            | 285-365                           | 18                                    |
| Phenolate ion | C <sub>6</sub> H <sub>5</sub> O <sup>-</sup>                | 310-400                           | 10                                    |
| Anisole       | C <sub>6</sub> H <sub>5</sub> OCH <sub>3</sub>              | 285-345                           | 20                                    |
| Aniline       | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub>               | 310-405                           | 20                                    |
| Anilinium ion | C <sub>6</sub> H <sub>5</sub> NH <sub>3</sub> <sup>+</sup>  | _                                 | 0                                     |
| Benzoic acid  | C <sub>6</sub> H <sub>5</sub> COOH                          | 310-390                           | 3                                     |
| Benzonitrile  | C <sub>6</sub> H <sub>5</sub> CN                            | 280-360                           | 20                                    |
| Nitrobenzene  | C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub>               | -                                 | 0                                     |

### 5) Effect of Substitution (conclusions)

- no effect of alkyl groups
- heavy atom effect
- electron donating substituents increase
- electron withdrawing kills fluorescence
- n- $\pi^*$  generally no good

### Applications of Fluorescence (general)

- 1) Quantitative analysis usually trace
- 2) Derivatization to convert non-fluorescent compounds to fluorescent
- 3) HPLC detection with & without derivatization (pre or post column)
- 4) Study chemistry of process involving a change in fluorescence (I or  $\lambda$ )
- 5) Study excited state chemistry
- 6) Qualitative identification limited use

### Fluorescence Instrumentation (basic diagram)









FIGURE 9–7 Schematic of a device for alternately exciting and observing phosphorescence. (Reprinted with permission from: T. C. O'Haver and J. D. Winefordner, *Anal. Chem.*, **1966**, *38*, 603. Copyright 1966 American Chemical Society.)