I) CONTINUUM SOURCES

1) Thermal radiation (incandescence) – heated solid emits radiation close to the theoretical "Black Body" radiation i.e., perfect emitter, perfect absorber

Behavior of Black Body

- Total power ~ T⁴ therefore need constant temperature for stability when using incandescent sources
- Spectral distribution follows Planck's radiation law

Spectral Distribution Curves of a Tungsten (Black Body) Lamp

IR Region thermal sources (Black Body) are:

- a) Nernst Glower fused mixture of ZrO₂,
 Y₂O₃, and ThO₂ normally operated at 1900 °C better for shorter IR λ's (near IR)
- b) Globar silicon carbide normally operated at 1200 to 1400 °C better at longer IR λ's (doesn't approach Black Body)
- c) <u>Incandescent Wire</u> e.g., nichrome wire cheapest way

- All operated at relatively low temperature.
- Good for IR and give some visible emission.
- Operated in air so will burn up if temp goes too high

Advantages

- Nernst Glower low power consumption, operates in air, long lifetime
- Globar more stable than Nernst Glower, requires more power & must be cooled. Long lifetime, but resistance changes with use

Visible Region sources are:

- a) Glass enclosed Tungsten (W) filament normally operated at ~3000 °K with inert atmosphere to prevent oxidation. Useful from 350 nm to 2000 nm, below 350 nm glass envelope absorbs & emission weak
- b) Tungsten-Halogen lamps can be operated as high as 3500 °K. More intense (high flux). Function of halogen is to form volatile tungstenhalide which redeposits W on filament, i.e., keeps filament from burning out. Requires quartz envelope to withstand high temps (which also transmits down to shorter wavelengths). Fingerprints are a problem also car headlights

- 2) Gas Discharge Lamps two electrodes with a current between them in a gas filled tube. Excitation results from electrons moving through gas. Electrons collide with gas → excitation → emission
- At high pressure → "smearing" of energy levels → spectrum approaches continuum
- The higher the pressure, the greater the probability that any given molecule or atom will be perturbed by its neighbor at the moment of emission.

a) Hydrogen Lamp
 - most common source for UV absorption measurements
 H₂ emission is from 180 nm to 370 nm
 limited by jacket

Line spectrum from →
100 watt Hydrogen
Lamp at low pressure in
Pyrex

Deuterium Lamp – same λ distribution as H₂ but with higher intensity (3 to 5 times) -

D₂ is a heavier molecule & moves slower so there is less loss of energy by collisions

High pressure $D_2 \rightarrow$ with quartz jacket

A-Xenon B-Tungsten C-Deuterium

For higher intensity

c) Xenon Lamp – Xe at high pressure (10-20 atm)

 high pressure needed to get lots of collisions for broadening leading to continuum

- short life relatively
- arc wander (stabilize)
- need jolt to start
- output = f(time)

A-Xenon B-Tungsten C-Deuterium

d) <u>High Pressure Mercury Lamp</u> – can't completely eliminate bands associated with particular electronic transitions even at very high pressures (e.g., 100 atm)

- For UV-vis absorption spectrophotometry usually use H₂ for UV and tungsten for visible region (switching mid scan)
- Sometimes use D₂ instead of H₂
- For fluorescence spectrophotometry use xenon arc lamp in scanning instruments
- Can use He below 200 nm
- Hg at low pressure is used in fixed wavelength (non scanning) fluorometers
- Can use mixture of Hg and Xe

II) LINE SOURCES

- 1) Gas (Vapor) Discharge Lamps at low pressure (i.e., few torr) minimize collisional interaction so get line spectrum
 - most common are Hg and Na
 - often used for λ calibration
 - Hg pen lamp
 - fluorescent lights are another example
 - also used UV detectors for HPLC
- 2) Hollow Cathode Lamps (HCL) for AA
- 3) Electrodeless Discharge Lamps (EDL) AA

4) Lasers (Light Amplification by Stimulated Emission of Radiation) – start with material that will exhibit stimulated emission and populate upper states typically using another light source

Pumping source used to populate upper states can be flashlamp or another laser

Often use prism to select pumping wavelength

Advantages of lasers

- 1) Intense
- 2) Monochromatic very narrow band
- 3) Coherent all radiation at same phase angle
- 4) Directional full intensity emitted as beam

Limitations of lasers

- 1) High cost in many cases
- 2) Wavelength range is somewhat limited
- Many operate in pulsed mode some are continuous wave (CW)

Pulsed mode lasers are not always problematic as light sources, can use pulse frequency with gated detection

Wavelength Selection

Three main approaches:

- 1) Block off unwanted radiation optical filters
- 2) Disperse radiation & select desired band monochromator
- 3) Modulate wavelengths at different frequencies interferometer

FILTERS

1) Absorption – colored glass, colored film, colored solutions – cheapest way