Image Detectors – powerful detectors used instead of PMTs to detect a complete spectrum or part of a spectrum

Common Image Detectors

- 1) Electron Image Intensifiers
- 2) Image Dissectors
- 3) Solid-State Imaging Systems
 - a) Vidicon tubes
 - b) Optical Multichannel Analyzers (OMAs)
 - c) Photo Diode Arrays (PDAs)
- 4) Charge Coupled Devices (CCDs)

These are often used with intensifiers – device to increase sensitivity

Photodiodes, Linear Diode Array & Two Dimensional Arrays

(b)

Reverse bias

(a)

Charge Coupled Device (CCD)

Photovoltaic Cell

Light excites electrons in Se at Se-Ag interface into "conduction band" and to metal conductor \rightarrow current

Good only for high light levels Subject to fatigue effects Another example of a Photovoltaic cell

Photovoltaic device incorporates fullerene derivative

Photoconductive detector – semiconductor used with voltage applied across it

- Photons \rightarrow electrons promoted to conduction band \rightarrow high conductivity (lower resistance)
- PbS, PbSe, InSb good for 0.7 to 4.5 µm (near IR)
- Ge activated with Cu, Au or Zn good from 2 to
 - 15 µm operated at ~5 °K
- Considerably less sensitive than PMTs
- Better than thermal detectors in IR

Photographic detection – place film at focal plane and expose (integrating detector) Advantages:

- 1) good resolution
- 2) fairly sensitive
- 3) covers entire spectral region

Disadvantages:

- 1) very old technique
- 2) quantitatively very bad (can use densitometer)

Thermal Detectors for IR – in IR region photons have lower energies → necessary to resort to <u>thermal detectors</u> – radiation absorbed and temperature change is detected

Response time is limited by rate of heat transfer \rightarrow slow

Sensitivity is also much poorer

Three types of thermal detectors:

- Thermocouples (most common) junction between dissimilar metals often covered with black substance to increase absorption
- Voltage difference across junction is a function of temperature
- Amplify signal and detect
- Response time ~60 msec (i.e. slow)
- Sensitivity is greater using a <u>thermopile</u> = a bundle of many thermocouples

2) Bolometer (thermistor) – resistance is a function of temperature Different kinds \rightarrow Ni or Pt metal or oxides like NiO, CoO or MnO Many have black coating on side toward source and a heat shield around them Typically connected to a bridge circuit Johnson noise is important Requires stable power supply

3) Golay Pneumatic Detector (best performance characteristics)

Heat from radiation \rightarrow gas expands \rightarrow

mirror position changes \rightarrow amount of light reflected to photodiode changes

Best sensitivity

Response time ~4 msec → heat transfer in gas phase faster than in solid

Schematic diagram of a Double Beam Spectrophotometer

Schematic diagram of a Single Beam Spectrophotometer

