FLUORESCENCE TECHNIQUES AND DATA TREATMENT METHODS RELATING THE INTERACTION BETWEEN URANYL ION AND FULVIC ACID AND THEIR ENVIRONMENTAL APPLICATION

Bingqi Zhu Department of Chemistry University of Massachusetts Lowell Research Advisor: Dr. David Ryan

OUTLINE

Introduction	 Dissolved Organic Matter & Uranium Fluorescence, Excitation-Emission Matrix (EEM) 	
Part One	Parallel Factor Analysis (PARAFAC)Development of Two-Site Model	
Part Two	 Regional Integration Analysis (RIA) Application of RIA in Fluorescence Quenching Study 	
Part Three	Samples from Merrimack River ValleyApplication of RIA in Water Study	
Conclusion	ConclusionFuture Work	

Dissolved Organic Matter (DOM)

(Left) Pawtucket Falls at Merrimack River, Lowell, MA (Right) Merrimack River Water

Dissolved Organic Matter

Approximate size of chemical and biological components of natural water

Dissolved Organic Matter

Dissolved Organic Matter

- Decay from dead plants, animals and microorganism
- Biological activity
- Transport toxicants
- Influence in aquatic ecosystem (pH, light)
- Fulvic acid is one of the important components of DOM

Uranium

- Application (Military, Civilian)
- Radioactive (alpha-particle)

- NO OR MILLING
- Health influence: internal/external exposure

Uranyl Ion (UO₂²⁺)

Uranyl species distribution (shown as percentage of total Uranyl as a function of pH) for (A). 1 µmol/L uranyl ion in 0.01 mol/L ionic strength solution (B). 800 µmol/L uranyl ion in 0.01 mol/L ionic strength solution Distributions calculated with MINEQL+ ionic equilibrium program.

Fluorescence Excitation-Emission Matrix (EEM)

Introduction	 Dissolved Organic Matter & Uranium Fluorescence, Excitation-Emission Matrix (EEM) 	
Part One	Parallel Factor Analysis (PARAFAC)Development of Two-Site Model	
Part Two	 Regional Integration Analysis (RIA) Application of RIA in Fluorescence Quenching study 	
Part Three	Samples from Merrimack River ValleyApplication of RIA in Water Study	
Conclusion	ConclusionFuture Work	

Parallel Factor Analysis (PARAFAC)

Composition of three-array model

Parallel Factor Analysis (PARAFAC)

$$x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + \varepsilon_{ijk} , i = 1, ..., I; j = 1, ..., J; k = 1, ..., K;$$

- x_{ijk} Fluorescence intensity
- ε_{ijk} Residue values
- i Sample #
- k Excited wavelength
- j Emission wavelength
- f Fluorophore

Output:

- a Concentration / Intensity
- b Emission spectra
- c Excitation spectra

Parallel Factor Analysis

Sample #		2	3	4	5	6	7
	M	ixtu	ire	rati	OS		
L-tryptophan	3	0	0	1	2	0	1
L-tyrosine	0	3	0	1	1	2	0
L-phenylalanine	0	0	3	1	0	1	2

Fluorescence Quenching

- $M + L \iff ML$
- K = [ML]/[M][L]
- $C_{M} = [M] + [ML]$
- $C_L = [L] + [ML]$
- $[ML]/C_L = (I_L I)/(I_L I_{res})$
- $\mathbf{I} = [(\mathbf{I}_{res} 100)/2\mathbf{KC}_{L}]\{(\mathbf{KC}_{L} + \mathbf{KC}_{M} + 1)\}$
- $-[({\rm KC_{L}} + {\rm KC_{M}} + 1)^2 4 {\rm K^2C_{L}C_{M}}]^{1/2} \} + 1$

K: Conditional stability constant [M]: Conc. of free metal ion [L]: Conc. of metal-free ligand [ML]: Conc. of metal-bound species C_M : Total conc. of metal C_L : Total conc. of ligand I_{res} : Residual fluorescence intensity I_L : Fluorescence intensity of total ligand I: Fluorescence intensity during the titration

Fluorescence EEM of SFA

EEM of soil fulvic acid sample 20mg/L

Fluorescence Quenching

Left: Quenching curves of soil fulvic acid titrated by uranyl ion at 25°C and pH 3.5

Bottom: Conditional stability constants (log K), SFA ligand concentrations (C_L), and residual intensity values (I_{res}) as determined by application of the Ryan-Weber model.

Sample	Peak	log K (±Std. Dev.)	C _L (µmol/L) (±Std. Dev.)	I _{res} (±Std. Dev.)
SFA	Peak A	4.43 (±0.08)	4.3 (±2.1)	13.8 (±3.6)
	Peak B	4.58 (±0.03)	3.9 (±1.1)	4.3 (±1.5)

Core Consistency Analysis

Two-Site Model

 $M+L_1 < \longrightarrow ML_1$ $M+L_2 < \longrightarrow ML_2$

 $K_1 = [ML_1]/[M][L_1]$ $K_2 = [ML_2]/[M][L_2]$

 $C_{M} = [M] + [ML_{1}] + [ML_{2}]$

 $C_{L1} = [L_1] + [ML_1]$ $C_{L2} = [L_2] + [ML_2]$

 $[ML_1]/C_{L1} = (I_{L1} - I_1)/(I_{L1} - I_{res1})$ $[ML_2]/C_{L2} = (I_{L2} - I_2)/(I_{L2} - I_{res2})$

 $(I_{L1}-I_1)/(I_{L1}-I_{res1}) = K_1[M]/(1+K_1[M])$ $(I_{L2}-I_2)/(I_{L2}-I_{res2}) = K_2[M]/(1+K_2[M])$

 $K_{1}K_{2}[M]^{3} + \{K_{1}K_{2}(C_{L1}+C_{L2}-C_{M})+K_{1}+K_{2}\}[M]^{2} + \{C_{L1}K_{1}+C_{L2}K_{2}-C_{M}(K_{1}+K_{2})+1\}[M] - C_{M}=0$

$$\longrightarrow K_1, C_{L1}, I_{res1}, K_2, C_{L2}, I_{res2}$$

Amino Acid Model Compound

Comparison of two-site model calculated results to theoretical and fixed values for Cu^{2+} titrations of L-tryptophan and L-tyrosine at pH 6

Compound	Theoretical log K values	Two-site model log K values (±std. dev.)	Fixed C _L (µmol/L)	Two-site model C _L (µmol/L) (±std. dev.)	Two-site model I _{res} (±std. dev.)
Tryptophan	4.86	4.79(±0.05)	10	13.3(±3.9)	0.700(±0.293)
L-tyrosine	4.55	4.69(±0.04)	30	25.6(±5.3)	0.334(±0.577)

			• Good results
Compound	Two-site model log K values (±std. dev.)	The Ryan- Weber model log K values (±std. dev.)	Two-site model is valid • Close results
Tryptophan	4.79 (±0.05)	4.70(±0.07)	Large excess of metal ion
L-tyrosine	4.69 (± 0.04)	4.69 (±0.07)	comparing with ligands $(more then 30 : 1)$

Results and Discussion

Conditional stability constants (log K), SFA ligand concentrations (C_L), and residual intensity values (I_{res}) as determined by application of the Ryan-Weber model.

	log K	$C_L (\mu mol/L)$	I _{res}
	(±Std. Dev.)	(±Std. Dev.)	(±Std. Dev.)
Peak A (Ex:330 nm, Em:450 nm)	4.49 (±0.02)	5.05 (±4.19)	15.1 (±2.2)
Peak B (Ex:235 nm, Em:450 nm)	4.56 (±0.07)	4.56 (±3.83)	1.2 (±0.7)

- Log K: Peak A < Peak B
- C_L : Peak A > Peak B
- I_{res} : Peak A > Peak B
- Strong binding ability at pH 3.5

Further Implication

• Three-site model ?

 $M+L_1 < \longrightarrow ML_1$ $M+L_2 < \longrightarrow ML_2$ $M+L_3 < \longrightarrow ML_3$ $[ML_1]/C_{11} = (I_{11}-I_1)/(I_{11}-I_{res1}) = K_1[M]/(1+K_1[M])$ $[ML_2]/C_{12} = (I_{12}-I_2)/(I_{12}-I_{res2}) = K_2[M]/(1+K_2[M])$ $[ML_3]/C_{13} = (I_{13}-I_3)/(I_{13}-I_{res3}) = K_3[M]/(1+K_3[M])$ $C_{M} = [M] + K_{1}C_{L1}[M]/(K_{1}[M]+1) + K_{2}C_{L2}[M]/(K_{2}[M]+1) + K_{3}C_{L3}[M]/(K_{3}[M]+1)$ \longrightarrow K₁, C_{L1}, I_{res1}, K₂, C_{L2}, I_{res2}, K₃, C_{L3}, I_{res3} Even more sites?

• PARAFAC is a good tool for analyzing mixtures

Introduction	 Dissolved Organic Matter & Uranium Fluorescence, Excitation-Emission Matrix (EEM) 	
Part One	Parallel Factor Analysis (PARAFAC)Development of Two-Site Model	
Part Two	 Regional Integration Analysis (RIA) Application of RIA in Fluorescence Quenching study 	
Part Three	Samples from Merrimack River ValleyApplication of RIA in Freshwater Study	
Conclusion	ConclusionFuture Work	

Regional Integration Analysis (RIA)

Jablonski diagram

Definition of Five Regions

EEM Region	Excitation (nm)	Emission (nm)	Description
1	200-250	280-330	Amino-acid-like
2	200-250	330-380	Amino-acid-like
3	200-285	380-550	Fulvic acid-like
4	250-400	280-380	Amino-acid-like & Soluble microbial by product-like
5	285-400	380-550	Humic acid-like

Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K., Environ. Sci. Technol. 2003, 37, 5701-5710

Experiment

• Sample: Soil Fulvic Acid (SFA),

Oyster River Fulvic Acid (ORFA),

Suwannee River Fulvic Acid (SRFA).

• Instruments: Perkin Elmer LS 55 fluorescence spectroscopy,

Perkin Elmer Spectrum 100 FTIR spectroscopy

Titration conditions: pH 3.5, temperature 25 °C, ionic strength
 0.01 mol/L

FTIR Results

FTIR spectra of SFA, ORFA and SRFA

Fluorescence EEM results

Fluorescence EEM of SFA(A), ORFA (B) and SRFA (C). Concentrations were fixed at 20 mg/L and measured at 25 ° C

Distribution of Regions

Percentage distribution of five regions in SFA, ORFA and SRFA

High percentage for Region 3 and Region 5 Low percentage for Region 1, Region 2 and Region 3

Fluorescence Quenching

Fluorescence quenching curves of SFA, ORFA and SRFA titrated with uranyl ion at 25 $^{\circ}$ C and pH 3.5

Equilibrium parameters including conditional stability constant (log K), ligand concentration (C_L) and residual intensity (I_{res}) values determined by the Ryan-Weber model and **RIA** data treatment method

Sample		log K (±Std. Dev.)	C _L (µmol/L) (±Std. Dev.)	I _{res} (±Std. Dev.)
SFA	Region 3	4.67 (±0.03)	3.9 (±1.2)	4.9 (±0.5)
	Region 5	4.44 (±0.07)	4.8 (±1.4)	13.3 (±3.5)
ORFA	Region 3	4.51 (±0.04)	5.3 (±1.0)	4.5 (±0.5)
	Region 5	4.20 (±0.06)	10.3 (±4.1)	13.3 (±1.3)
SRFA	Region 3	4.49 (±0.06)	9.0 (±2.0)	6.9 (±0.6)
	Region 5	4.11 (±0.06) ♥	21.0 (±5.4) V	19.0 (±1.9) V

Equilibrium parameters including conditional stability constant (log K), ligand concentration (C_L) and residual intensity (I_{res}) values determined by the Ryan-Weber model and **PARAFAC** data treatment method

Sample		log K (±Std. Dev.)	C _L (µmol/L) (±Std. Dev.)	I _{res} (±Std. Dev.)
SFA	Region 3	4.58 (±0.03)	3.9 (±1.1)	4.3 (±1.5)
	Region 5	4.43 (±0.08)	4.3 (±2.1)	13.8 (±3.6)
ORFA	Region 3	4.34 (±0.05)	7.1 (±1.3)	2.1 (±0.8)
	Region 5	4.17 (±0.07)	9.9 (±3.1)	13.5 (±1.7)
SRFA	Region 3	4.36 (±0.07)	11.7 (±1.9)	4.1 (±0.8)
	Region 5	4.09 (±0.08)	21.2 (±5.6)	19.4 (±2.0)

SFA Results comparison between PARAFAC and RIA data treatment methods

Method		log K (±Std. Dev.)	C _L (µmol/L) (±Std. Dev.)	I _{res} (±Std. Dev.)
RIA	Region 3	4.67 (±0.03)	3.9 (±1.2)	4.9 (±0.5)
	Region 5	4.44 (±0.07)	4.8 (±1.4)	13.3 (±3.5)
PARAFAC	Region 3	4.58 (±0.03)	3.9 (±1.1)	4.3 (±1.5)
	Region 5	4.43 (±0.08)	4.3 (±2.1)	13.8 (±3.6)

Discussion

Limitations

- Region selection in a EEM
- Assumptions should be made in applying fluorescence quenching model

Advantages

- Sensitive and fast for quantitative analysis
- Analysis fluorophores without distinct peaks

Introduction	 Dissolved Organic Matter & Uranium Fluorescence, Excitation-Emission Matrix (EEM) 	
Part One	Parallel Factor Analysis (PARAFAC)Development of Two-Site Model	
Part Two	 Regional Integration Analysis (RIA) Application of RIA in Fluorescence Quenching study 	
Part Three	Samples from Merrimack River ValleyApplication of RIA in Water Study	
Conclusion	ConclusionFuture Work	

History River as Sink and Sewer

Left: The scum floating at the surface of the intake pond to Ames Worsted Company's turbine building near the Middlesex Dam is visible in this early 1900s photo.

Right: During periods of low flow in the Concord River, the stench of pollution was especially bad.

http://lowelllandtrust.org/greenwayclassroom/history

Sampling Sites

Natural freshwater sampling site:

- 1. Mascuppic Lake (Tynsboro, MA)
- 2. Merrimack River (Lowell, MA)
- 3. Concord River (Lowell, MA)
- 4. Haggetts Pond (Andover, MA)
- 5. Merrimack River Estuary
 - (Newburyport, MA)
- 6. Plum Island Wetland (Newbury, MA)

pH values, absorbance and concentrations of common metal ions (in ug/L) of natural water samples

Sample	рН	Absorbance at 254 nm	Cd (±S.D.)	Cu (±S.D.)	Fe (±S.D.)	Mn (±S.D.)	Ni (±S.D.)	Pb (±S.D.)
Plum Island Wetland	7.4	0.111	145.5 (±9.4)	79.6 (±3.1)	2053.2 (±143.7)	176.7 (±12.9)	1018.5 (±53.7)	N.A.
Haggetts Pond	7.3	0.112	0.2 (±0.0)	8.7 (±0.1)	135.9 (±20.4)	49.2 (±1.6)	10.4 (±1.9)	0.5 (±0.2)
Concord River	7.2	0.304	1.2 (±0.2)	4.8 (±0.1)	860.3 (±93.7)	44.7 (±6.7)	3.8 (±0.7)	0.6 (±0.3)
Mascuppic Lake	7.3	0.118	0.4 (±0.2)	5.4 (±0.4)	131.5 (±22.4)	78.5 (±0.2)	9.7 (±2.1)	0.1 (±0.1)
Merrimack River (Lowell)	7.3	0.091	0.5 (±0.2)	4.3 (±0.1)	195.4 (±17.6)	1.7 (±0.8)	N.A.	N.A.
Merrimack River (Newburyport)	7.3	0.140	4.3 (±0.7)	15.7 (±0.7)	596.4 (±95.4)	79.6 (±3.1)	84.5 (±10.5)	127.0 (±13.5)

Fluorescence EEMs of natural water samples

Relative fluorescence intensity from different regions when the Concord River water is set as 100 %

- Amino acids
- Lake, Pond, Wetland > River
- Humic substances

River > Lake, Pond, Wetland

Sample	Region	log K (±Std. Dev.)	C _L (µmol/L) (±Std. Dev.)	I _{res} (±Std. Dev.)			
Haggetts Pond	Region 3	4.38 (±0.03)	*	10.1 (±0.4)			
	Region 5	3.83 (±0.08)	*	35.5 (±4.9)			
	Region 4	3.68 (±0.08)	*	8.6 (±3.3)			
Mascuppic Lake	Region 3	4.01 (±0.03)	*	3.4 (±3.34)			
	Region 5	3.93 (±0.07)	4.32 (±0.93)	34.2 (±1.3)			
	Region 4	3.74 (±0.11)	2.65 (±2.17)	2.4 (±4.1)			
Concord River	Region 3	4.26 (±0.02)	*	6.7 (±0.4)			
	Region 5	3.93 (±0.04)	*	23.6 (±1.7)			
	Region 4	3.65 (±0.03)	*	4.8 (±1.5)			
Merrimack River Lowell	Region 3	4.49 (±0.05)	*	8.1 (±0.2)			
	Region 5	3.97 (±0.03)	*	28.0 (±1.7)			
	Region 4	3.73 (±0.02)	*	0			
Merrimack River Newburyport	Region 3	4.08 (±0.03)	*	3.4 (±2.3)			
	Region 5	3.91 (±0.04)	4.83 (±3.26)	29.3 (±0.5)			
	Region 4	3.91 (±0.03)	4.46 (±2.78)	6.3 (±0.1)			
Plum Island Wetland	Region 3	3.99 (±0.02)	*	0.9 (±1.1)			
	Region 5	3.67 (±0.05)	0.62 (±0.44)	25.6 (±1.4)			
	Region 4	3.88 (±0.22)	0.73 (±0.80)	0			
*are the values not provided due to extreme small values obtained							

Discussion

- Stability constants: Region 3 > Region 5 > Region 4
 Merrimack River, Lowell is highest
 Plum Island Wetland is lowest
- Residual values: Region 5 > Region 3 > Region 4
- Extreme small values of C_L
 - Low concentration of ligand site in freshwater DOM
 - Complicated integrations with DOM such as self binding and large colloid aggregation
 - Restrictions of using the Ryan-Weber mode

Final Conclusion

- Applications of EEM
- Application of PARAFAC and RIA in DOM-metal ion binding study
- Application of two-sites model
- Environment application (algea activity, waste water evaluation, transport of metal ion)

Future Work

- Neutral pH conditions (e.g., pH 7)
- Other metals (e.g., Al³⁺)
- Apply PARAFAC in Chromatography for DOM study

Publications

- Zhu, Bingqi, Pennell, Stephen A. and Ryan, David K. (2014) Characterizing the Interaction between Uranyl Ion and Soil Fulvic Acid Using Parallel Factor Analysis and a Two-Site Fluorescence Quenching Model. Microchemical J. 115, 51-57.
- Zhu, B. and Ryan, D.K. (2016) Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching. J. Environ. Radioactivity 153, 97-103.
- Zhu, B. and Ryan, D.K. (2017) Complexation Study of Uranyl Ion with Dissolved Organic Matter in Natural Fresh Waters by Fluorescence Quenching Techniques. in Nuclear Engineering, ISBN 978-953-51-5411-2.