Chemical Oceanography Ryan Lecture 9 - April 8, 2004

Dr. David K. Ryan Department of Chemistry University of Massachusetts Lowell & Intercampus Graduate School of Marine Sciences and Technology

http://faculty.uml.edu/David_Ryan/84.653

Organic Compounds in the Sea

Where do they come from?
What are they?
Why are they important?
Where do they go?

- Biological molecules (lipids, proteins, carbohydrates, etc., etc.)
- Hydrocarbons
- Humic Materials (=other stuff)

Average Concentrations of O in Baltic and North S	Organic Compounds Sea Water	
Components	Concentration $(\mu g \ C \ liter^{-1})$	
Free amino acids	10	
Combined amino acids	50 (to 100?)	
Free sugars	20	
Combined sugars	200	
Fatty acids	10	
Phenols	2	
Sterols	0.2	
Vitamins	0.006	
Ketones	10	What is this stuff?
Aldehydes	5	
Hydrocarbons	5	
Urea	10	Morel, 1983
Uronic acids	18	
Approximate identified total	340 μ g C liter ⁻¹	
Approximate total	4000 μ g C liter ⁻¹	3

Ryan (2000)

)	10	20	30	40	50	60	70	80	90	100%
	1	1	4	1	124	1	1		4	
				F	ulvic aci	d	H subs	umic tances		
				H	umic aci	id				
				н	lydrophi	lic acid				
		Car	bohydra	ates						
		Car	boxylic	acids	S	imple				
		Am	ino acid	s	соп	npounds				
]		Hyd	irocarbo	ons						

Libes, 1992

FIGURE 23.13. Composition of dissolved organic carbon in average river water with a DOC concentration of 5 mg/L. Source: From Organic Geochemistry of Natural Waters, E. M. Thurman, copyright © 1985 by Kluwer Academic Publishers, Dordrecht, The Netherlands. Reprinted by permission. 20

Humic Materials or Humic Substances

- Complex organic molecules of natural origin
 Much is known about properties/importance
 Some is known about structural components
 Little is known about exact chemical nature
 - or exact structure because:
 - Complexity
 Deficiencies in analytical
 Heterogeneity
 techniques
 - ConcentrationsInterfering species

PORE SIZE OF FILTRATION PROCESSES

Carbon Cycle Libes, 1992

Inventories in $10^{15} \text{ g C} = \text{BMT}$

Fluxes (arrows) 10¹⁵ g C/yr

Distribution of Organic Carbon

(a) Major compartments in the global ocean

(b) Major compartments for the planet

Cauwet, 1978

Major reservoirs of organic and inorganic carbon

Reservoir type	Amount (10 ¹⁸ g C)			
Sedimentary Rocks				
 Inorganic (Carbonates) 	60,000			
• Organic (e.g. kerogen, coal)	15,000			
Active (surficial) pools				
Inorganic				
Marine DIC	38			
Soil Carbonate	1.1			
 Atmospheric CO₂ 	0.66			
Organic				
 Soil humus * 	1.6			
 Land plant tissues 	0.95			
Seawater DOC	0.60			
Surface marine sediments	0.15			
After Hedges, 1992; * pre-anthropogenic values.				

Active Carbon Reservoirs (excluding Ocean DIC)

Organic Compounds in the Sea **#** Where do they come from? **#** What are they? **Bio & Geo Hydrocarbons** Carbohydrates (polysaccharides), sugars Lipids, fats, waxes, oils, fatty acids Pigments **Bio** Nucleic acids, RNA, DNA Amino acids, polypeptides, proteins, enzymes Low molecular weight carboxylic acids Humic Substances 13

Organic Carbon Inputs to SW

Allochthonous = formed externally (*ex situ*)Autochthonous = formed internally (*in situ*)

Most Marine Humic Material is formed *in situ* through a combination of biotic & abiotic processes

Some Humic Material (i.e., coastal) is introduced from terrestrial sources (formed on land)

Transformation of DOC

- # Biological molecules are labile = readily broken down or degraded — fast
- By-products of this breakdown (substances not completely remineralized) can react with other organic compounds in a process called Humification or Early Diagenesis
- This results in fairly non-labile Humic Materials
- Humics may degrade slowly or be removed to the sediments (refractory or non-labile)

Transformation of DOC

- These processes occur in water column, in sediments, and in soils
- **#** Humification is the first step, fast, aerobic
- Fossilization or carbonification occur more slowly on geologic time scales, anaerobicly, after burial in sediments
- # Diagenesis, Catagenesis, Metagenesis

(GEOPOLYMERS)

Humic Structure Proposed by Schnitzer (Rashid 1985) 20

Structure Attributed to Gamble et al. (1985)

Morel & Hering (1993) Based on Aiken et al. (1985)

Possible Structural Units Set Forth by Averett, Leenheer, McKnight & Thorn (1989) From Morel & Hering, 1993

Kleinhempel reprinted from Albrecht Thaer Archiv (1970)

Molecular model of the lowest energy conformation of humic acid building blocks

Carbon atoms-green Oxygen atoms-red Nitrogen-blue Hydrogen not shown

Davies & Ghabbour, 1999

Importance of Humic Materials

Global Carbon Reservoir Take Part in Interfacial Phenomena Undergo Coagulation and Aggregation **Involved in Photochemical Reactions Contain Radicals Known Reducing Agents** Methylate Metals Form Chlorinated Species, THMs DBPs **Detoxify Metals** Limit Bioavailability of Metals **Alter Solubility** Influence **Bind Metals & Organic Pollutants Terminal Electron Transport Acceptor for** Pactoria

The Removal of Dissolved Humic Acid During Estuarine Mixing

L. E. Fox^a

College of Marine Studies, University of Delaware, Lewes, Delaware, USA Received 2 February 1982 and in revised form 28 May 1982

Keywords: humic acids; dissolved organic compounds; estuaries

A simple method for the determination of dissolved humic acid based on carbon analysis is presented. This method was used to measure the distribution of dissolved humic acids in seven coastal plain estuaries located in the middle-Atlantic United States. Results indicate that 100% of the dissolved humic acid was removed during estuarine mixing, although concurrent measurements of dissolved organic carbon showed either production or conservative behavior in regions of the estuary where humic acid removal was observed. It is apparent from these observations that removal of dissolved humic acid is a minor part of the estuarine transport of dissolved organic carbon.

Laboratory experiments carried out by mixing river water with sea water demonstrated that salt-induced removal of dissolved humic acid was insignificant in two of three estuaries studied. These results suggest *in situ* removal of dissolved humic acid may not be universally caused by increasing estuarine salinity.

Fox, 1983

Figure 3. Humic acid carbon as a function of salinity. The standard error of the mean is 5%.

Wavelength nm

Figure 1. Absorption spectra (pathlength of 1 cm) of several waters and a generalized surface solar energy distribution (adapted from ref. 8). (DOC of waters: A = 3.0, B = 7.8, C = 13.4, D = 13.4, $E = 15.4 \text{ mg } L^{-1}$).

Metal Complexation by Humics

Leenheer et al. (1998)

Morel (1983)

References

Cauwet, G. (1978) Oceanologica Acta 1, 99 Davies & Ghabbour (1999) Chemistry & Industry 7, 426 Fox, L. (1983) Estuarine Coastal Shelf Sci. 16, 431 Hedges, J.I. (1992) Global Biogeochemical Cycles: Progress and Problems, Mar. Chem. 39, 67 Leenheer, J.A. (1985) in Humic Substances in Soil Sediment and Water: Geochemistry, Isolation and Characterization, Wiley, NY, pp. 409-429 Lenheer, J.A. et al. (1998) Environ. Sci. Technol. <u>32</u>, 2410 Rashid, M.A. (1985) Geochemistry of Marine Humic Compounds, Springer-Verlag, NY, NY, 300 pages