Greenhouse Gases & Global Climate Change
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L. Introduction : Observations of Langley on
Atmospherical Absorption,

GREAT deal has been written on the influence of

the absorption of the atmosphere upon the climate.
Tyndail 1 in particalar has pointed out the enormous im-
portance of this question. To him it was chiefly the diurnal
and annual variations of the temperature that were lessened by
this circumstance.  Another side of the question, that haslong
attracted the attention of physicists, is this: Is the mean
temperature of the ground in any way influenced by the
presence of heat-absorbing gases inthe atmosphere ?  Fourier}
maintained that the atmosphere acts like the glass of a hot-
house, because it lets through the light rays of the sun but
vetains the dark rays from the ground. This idea was
elaborated by Pouillet § ; and Langley was by some of his
researches led to the view, that * the temperature of the
earth under direct sunshine, even though our atmosphere
were present as now, would probably fall to —200° C., if
that atmosphere Qid not possess the quality of selective

* Extract from a paper presented to the Royal Swedish Academy of
Sciences, 11th December, 1895, Communicated by the Author,

1 “Heat a Mode of Motion," 2nd ed. p. 405 (Lond., 1865).

1 Mém, del'Ade. R. d. Sel. de U'Inst. de France, t. vii. 1827,

§ Comptes rendus, t. vii. p. 41 (1838),

Lhil, Mag. 8. 5. Vol. 41. No. 251, dpril 1896, S

In 1896, Arrhenius made the
connection between

atmospheric CO, and global
climate!



Time Scales for Exchange
Atm.-surface ocean ~ 10 yr
Atm. - deep ocean ~1000 yr

_ H ~ 5 7 . .
Atm./Ocean - sediments ~ 10° to 10 yrA'\.tmosphere Oceanic processes drive

120 (R) S L glacial to interglacial
changes in atm. CO,

60X more CO, in ocean
than in atmosphere!

. HCOs3 0.39
“P> (Rivers)
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m The global carbon cycle. Values in brackets are preanthropogenic reservoir sizes in Pg (10'* g); values on the arrows
are furxes in Pgy . Dashed lines represent the long-term carbon cycle determined by weathering. Values are normalized to the flux
of DIC from rivers (see Chapter 2). Solid arrows are the shorter-term carbon fluxes associated with photosynthesis and respiration.
The wiggly vertical line indicates particulate C and DOC transport from the ocean euphotic zone to deep water. Symbols: WV,
weathering of carbonates (CaCO; + CO, + H,0 — 2HCO3 + Caz+) and silicates (silicate + CO, + H,0 —

clay + HCO;3; ™ + cations); GE, gas exchange; P, gross photosynthesis (CO, + H,O — CH,O (OM) + O,); R, respiration (CH,O
(OM) + O, — CO, + H,0); PPT, calcite precipitation (the reverse of carbonate weathering); H, hydrothermal processes; RV,
reverse weathering (the reverse of silicate weathering).
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ST MR WA Sketch of the three-

box model of the atmosphere,
surface and deep ocean. Equations
indicate the circulation dynamics
(Vi in my ™', is the mixing rate
between the surface and deep
ocean.); stoichiometry of the
particulate transport (J in mol m >

y_'); and chemical equilibria of the

carbonate system.

Atmosphere

Equilibrium

Surface Ocean (S) A

Deep Ocean (D) DIP, = 2.2 mmol kg™

At o = 2371 meq kg™’
DIC, = 2258 umol kg™*

p
Vin éJ
Y

Y

Dynamics: Vj x

d[CtD] =0=V,x([Cg]-[Cp])+J

Stoichiometry: AP : AN : ADIC : AAt : ACa

1:16 : 136 : 44 : 30
Equilibrium:

DIC =[HCO3] +[CO3 ] +[CO,]
Acgs =[HCO3]+2 x[COZ ] +[B(OH);]
By = B(OH); + B(OHy )

. -1cod K, 1003 11H']
T Moo, [HCO3]
K- [HCO3] [H*] K. - [BOH)4 J[H']

[CO,] °" [B(OH)]



380 | THE GLOBAL CARBON CYCLE

| _{;ZTable 11 2. I The eﬁect of the solubtlzty and bwlog_tcal pumps on the ﬁLgaczty of 602 m 1 the atmosphe
detemmed by the s¢mple two lay _

The ﬁrst Tow is the standard

OC CaCOB

d deptcted in Fzg 1.2

| | se nd_the rows under th1s 1nd1cate changes due to -te
i_carbon ﬂux c1rcu1at10n rate an' the orgamc carbon to CaCOB ratm ’f the parucle flux

Temp  [DIP]s T rnix Rocica DICS Ats
Case °C umol I<g_E y umol kg_' Heq kg“'
Standard 20 05 1000 3.5 2027 2296
Temp. effect |5
25
Biol. pump
Carbon flux 20 2.2 27258 2371
0.0 959 2274
Circulation 0.85 500 2074 2312
0.0 1500 1959 2274
OCCaCO; 0.5 1000 1 O: 2059 236
(P.OC=106)
|.5:] 1957 2157




Latitude S

SOFEX Fe Fertilization Study 1n Southern Ocean
North Patch
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he Greenhouse Effect
%70 greenhouse avg. earth temp. ~ -25° C instead of +15 with

Some solar radiation
is reflected by the
Earth and the
atmosphere.

Some of the infrared
radiation ﬁasses through
the atmosp

ere, and some
is absorbed and re-emitted
in all directions by

? greenhouse gas

molecules. The effect of

| 4 y this is to warm the Earth's

] surface and the lower
\ atmosphere.

Solar radiation %
passes through

the clear
atmosphere

Most radiation is

EARTH /\
absorbed by the Earth's

surface and warm:s it. Infrared radiation is
emitted from the

Earth'ssurface:

4 4

Source: OSTP



Radiation Transmitted by the Atmosphere
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(a) Global atmospheric concentrations of three well mixed
greenhouse gases
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ANNUAL FOSSIL FUEL EMISSION (GtC/yr)
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Atmospheric Carbon Dioxide Concentration
and Temperature Change
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Radiative forcing relative to 1750 (W m=)

Emitted Resulting atmospheric Radiative forcing by emissions and drivers LEVeLOf
compound drivers confidence
| T T T I T |
8 Co, CO, ' ' L 168[1.33102.03] | VH
@ | | I
3 |
é CH, CO, H,0" O, CH, : : : | 097[0.74t01.20] | H
: Halo- I ! ' | ! |
8 caons | - ©FCs HCFCs I I | I | I 018[0.01100.35] | H
€ I | I | [ I
2 NO N,O ' ' I : I : 0.17[0.13100.21]| VH
| | | |
I | | |
;f’, CO CO, CH, O, | | : | : | 0.23[0.16100.30] | M
8|3 | | | | | '
£ NMVOC CO, CH, O, | [ | I | | 0.10[0.05t0 0.15] | M
<<
|
E | | | | [ |
8 NO, Nitrate CH, O, | ' I ! I | 015[0.34100.03]| M
& I I | ' I
é Aerosols and | wineral dust Nitrate I I l | :
§ Pprecursors | oOrganic carbon Black carbon I l | 2l [0 10 D.25] H
& (Mineral dust, | | | [ | I
., NH,, : ; |
Organic carbon | Cf0ud adjustments I - : ! | ! 0.55[-1.3310-006] | L
and Black carbon) |  due to aerosols | , | [ | I
[ | I f
Albedo change ' !
| -0.15 [-0. -0.
due to land use ! ! B | : | | (Fieifeato-0.03] | I
= . ' ' I : I
3 Changes in | | ] | ' | ' 0.05[0.00t0 0.10] | M
2 solar irradiance | | | | | [
2.29[1.13 to 3.33]
. 2011 H
Total anthropogenic l .
; 1980 | 1.25[0.64 to 1.86] H
RF relative to 1750 | ' |
1950 | : I 0.57[0.29t0 0.85] | M
| I | | . I I I
-1 0 1 2 3



Global Climate Drivers
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< sun’s Energy Output
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i Land Use Changes
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CoolingWarming
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Heat-trapping emissions (greenhouse gases) far
outweigh the effects of other drivers acting on

Earth's climate.
Source: Hansen et al. 2005,



Departures in temperature (°C)
from the 1961-1990 average

Departures in temperature (°C)
from the 1961-1990 average
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Climate Drivers Compared with
Global Surface Temperature
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The model output (blue shading) that
includes both natural and human-induced
drivers (lower graph) gives a better
match with the observed temperature
response (red line). source: IPcC TaR 2001.
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No Slow Down in Global Warming

Trend

~N

NOAA'’s National Centers for Environmental Information w‘\
Adapted from: “The recent global surface warming hiatus: Fact or artifact of data biases?” iv
Science, 2015 P

D
1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Contrary to much recent discussion, the latest corrected analysis shows that the rate

of global warming has continued, and there has been no slow down.
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Northern Hemisphere spring snow cover
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Atmospheric Carbon Dioxide Concentration
and Temperature Change
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I CO; concentration in the
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= Temperature changes through time
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(c) Northern Hemisphere September sea ice extent (average 2081-2100)

== CMIP5 multi-model
average 1986-2005
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average 2081-2100

CMIPS5 subset
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10 m sea level rise

FIGURE 2 Sea Level Rise In Line with Highest Projection

Sea Level (hange {om)
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rise by the end of this
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though less likely level.
Source (IPCC 2007 and
Pfeffer et al. 2008).4.5
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Changes in sea level
sinca 1973, compared
with IPCC scenarios
(dashed lines and
gray ranges), based
on tide gauges (rad)
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From Rahmstorf et al.
(2007) updated by
Rahmstorf (personal
commumication).

FIGURE 2 5ea Level Rise by End of This Century
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FIGURE 4 Shrinking Summer Arctic Sea lce Area
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COMPARISON WITH THE RATE OF ACCUMULATION OF

GIGATONS CARBON/YEAR

CO, IN THE ATMOSPHERE

no
ATMOSPHERIC CO, RISE (rLatm /yr)
2.1 GtC/patm

7 T T - T T !
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5
4
3
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IN ATMOSPHERIC
Ik CO> INVENTORY -
0 | ] L l | ! 0
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~ OVER THE TIME PERIOD DURING WHICH THE ATMOSPHERE
HAS BEEN ACCURATELY MONITORED, ITS CO, CONTENT HAS

BEEN RISING AT A RATE ONLY ABOUT 60% THE RATE EXPECTED

IF ALL THE FOSSIL FUEL CO, RELEASED REMAINED AIRBORNE.



APROXIMATE
EARTH CARBON BUDGET
FOR THE 1980s;
THE ANTHROPOGENIC PERTURBATION

FOSSIL FUEL

BURNING DEFORESTATION

5.4GtC/yr  ~10 Gt C/yr
ﬂ c ' ' ACCUMULATION
Al CREENING IN ATMOSPHERE
[ ~1.0GtC/yr i3.3 Gt C/yr

SOURCES
(gigatons of carbon/year)*
FOSSIL FUEL 5.4 ATMOS.

OCEAN UPTAKE

3.3
DEFOREST. 1.0  OCEAN 2.1 2.1 Gt C/yr
6.4 GREENING 1.0
6.4
3.3 _
FRAC. TO ATMOS. —6_?}- = .52 "
) IGt = Ix IO'sgrams
FRAC. TO SEA .% . .33 C 1 10° fone
FRAC. TO coNT. +2 = 5
. . 6.4 -




Atmosphere

Net transfer to ocean due to disequilibrium in pCO,

CO,

Warm, Temp/Tropical
Surface Ocean

2HCO;
| 4

Surface/deep
exchange primary
brake on net CO,

transfer

\4

Cold, Deep
Interior Ocean

HCO;

Air/sea exchange
calibrated with *C and
Rn tracers

+ H,0
— H,CO;+ CO;~

Whole ocean has the capacity to absorb 5/6
of the atm. increase in CO, through this



THERMODYNAMIC CAPACITY FOR CO, UPTAKE

IDEALIZED SEA WATER (NO BORATE)

| CHARGE BALANCE

Na*] +[K*]+2 [Ma™]+2[ca**]= [cr]+2[s05 ]+ [Heos]+2[co5
OR -
Na*] + [K*]+2 [Mg™*]+2[ca™*]-[c17]-2[s047] = [Heos]*+2[cos
OR

[ALKALINITY] = [HCog]+2[co5 ]
MASS BALANCE FOR DISSOLVED INORGANIC CARBON
[£c0z]= [0, ] * [Heo3] +[cos5]

CHEMICAL EQUILIBRIUM
CO, +CO3 + HpO <=> 2HCO5

K-=—-——[HCO3-]2 Ca= 1002 _ g, pmolka
“ [coz][cos] pCO2 fLatm

EXAMPLE T=18°C S=35% K(=1445 ALK=2100
pCO, = 280 Latm| pCOz = 360/Latm A

[coa] = 9.8 |[cos] = 12.3 [+2.6pmol/kg
[Hco;] = 1700 | [Heos] = 1769 | +69umol/kg
[coj] = 200 |[co;] = 166 |-34umol/kg
[aLk] = 2100 | [aLk] = 2100 0 pLmol/kg
[sco,] = 1910 | [5C0,] = 1948 | +38umol/ig

ApCO2/PCOz _ 80/280
A = = = .4
REVELLE FACTOR =~ 5 co,75c0, ~ 38/1910 ~




ACTUAL SEA WATER (INCLUDING BORATE)
CHARGE BALANCE

[aLkALINITY] = [Heoz] + 2[co3 ] + [HaBO3]
MASS BALANCE BORON

[28] = [H3805'] + [HaBO4] = 4IO.63—55'/-’-"‘°Vk9
CHEMICAL EQUILIBRIUM
[H4BO5] [HCO;]
[H3808][co5]

EXAMPLE T=18°C S=35%e Ké=|482 KB'=2.75
ALK =22i6 Si02=0 NO3z=0 P04=0

Kg =

PCO; = 280 atm | pCOz =360 atm A

[cop] = 96 |[coz] = 12.3| +2.6pumol/kg
[Hcoz] = 1702.5 | [HCo;] = 1779.5 | +77.0umol/kg
[co5] = 2037 |[cos| = 173.1 | -30.6umol/kg
[£c0;] = 1915.8 | [2C0,] = 1964.9 |+49.1 wmol/kg
[H3809] = 308.9 | [H,805 ] = 323.9 | +15.0mal/kg
[H4BO4 | = 101.7 | [H4BOS] = 86.7 | -15.0pmol/kg
[z8] = 406 |[zB] = 410.6| o0.0umol/kg
[on’] = 4a|[on] = 36| -0.8umol/kg

2216.0 | 0.0umol/kg

—
>
~

N

n

2216.0 | [aLK] -

REVELLE FACTOR -2PC02/PC02 807280

= =1,
A300,/5C0, - 49.4/1915.8
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Depth (km)

Depth (km)

Depth (km)

m

Anthropogenic CO, (umol kg™)
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A cross section of
the anthropogenic CO; in the
ocean as determined by the C*
method. Robert Key, personal
communication; Key et al. (2004).




