Radioisotope Geochemistry An Introduction

- Variety of naturally occurring and anthropogenic radioisotopes can be used to provide information on a wide variety of processes
- Can be used as tracers in same manner as stable isotopes but have the advantage of **time** as a parameter
- Their use requires certain assumptions be made must be assessed on a case by case basis

Fig. 1-2 Chart of the light element isotopes showing percent abundances of the stable isotopes (shaded black) and half-lives of radioisotopes (s = second, m = minute, d = day, a = year) with their principal and secondary decay modes, where α = alpha emission (2p and 2n), ε = electron capture, β^- = electron (beta) emission, β^+ = positron, γ = gamma emission, n = neutron emission, p = proton emission (after General Electric Ltd., 1989).

Examples of Processes

- Water Column Vertical and Horizontal Transport by
 - Mixing
 - Particle Scavenging and Sedimentation
 - Lateral advection
- Sediment Accumulation & Dating
 - Accumulation Rates
 - Mixing
 - Resuspension

Modes of Decay

- Alpha(α) emission of two neutrons and two protons together as helium ion from nucleus
- Beta (β) emission of electron *from nucleus* resulting in increase in atomic number of 1 in original nucleus
- Gamma (γ) emission of photons from excited nuclei

Basic Equations of Decay

 $N = N_o e^{-\lambda t}$

Where $N_o =$ number of atoms at t = 0 N = number of atoms at time = t $\lambda =$ first order rate (decay) constant $\lambda N =$ Activity (Bq (= dps) or dpm unit used)

Decay Equations (cont.)

 $\ln N = \ln N_o - \lambda t$ When N = ½ N_o $t = t_{1/2}$ i.e. ln 0.5 = - $\lambda t_{1/2}$ $t_{1/2} = 0.693/\lambda$

Classes of Radioisotopes

1. Primordial

- Parents produced by super-novae, long-lived
- not produced on earth
- e.g. U-series
- 2. Cosmogenic
 - Produced by interaction of cosmic rays with atoms in the atmosphere or land surface
 - Short to long-lived
 - e.g. ¹⁴C
- 3. Artificial
 - 1. Man-made
 - 2. Purposefully or incidentally (nuclear bombs)
 - 3. e.g. ²³⁹Pu

Production of ¹⁴C in Atmosphere

TABLE 28.6

Basic Information Concerning Nuclides Produced by Cosmic Rays

E IN A Prest Bas	Nuclide								
	зН	⁷ Be	¹⁰ Be	¹⁴ C	²⁶ A1	³² Si			
Half-life (y)	12.3	0.145	2.5×10^{6}	5680	7.4×10^{5}	500			
Production rate in total atmosphere									
$(atom cm^{-2} s^{-1})$	0.25	0.081	0.045	2.5	1.4×10^{-4}	1.6×10^{-4}			
Fraction of total earth inventory in									
Atmosphere	0.072	0.71	3.9×10^{-7}	0.019	1.4×10^{-6}	2.0×10^{-3}			
Land surface	0.27	0.08	0.29	0.04	0.29	0.29			
Ocean-mixed layer	0.35	0.2	5.7×10^{-6}	0.022	1.4×10^{-5}	0.0035			
Ocean-excluding mixed layer	0.3	0.002	10-4	0.92	7×10^{-5}	0.68			
Oceanic sediments	0	0	0.71	0.004	0.71	0.028			
Average concentration in ocean									
(10 ⁻³ dpm kg water ⁻¹)	36	- E S	10-3	260	1.2×10^{-5}	2.4×10^{-2}			
Average specific activity in ocean									
(dpm g element ⁻¹)	3.3×10^{-4}	-	1600	10	0.0012	0.008			
Global inventory (kg)	3.5	3.2×10^{-3}	4.3×10^{5}	7.5×10^{4}	1.1×10^{3}	1.4			
Global inventory (MCi)	35	1.1	6.4	340	0.020	0.023			

Source: From Chemical Oceanography, vol. 3, J. D. Burton (eds: J. P. Riley and G. Skirrow), copyright © 1975 by Academic Press, Orlando, FL, p. 140. Reprinted by permission. Data from *The Handbook of Physics*, 2E, E. U. Condon and H. Odishaw, copyright © 1967 by McGraw-Hill, Inc., New York, pp. 9.277, 9.285, 9.319. Reprinted by permission.

Hughen et al. Science 2004; Cariaco Basin sediment ¹⁴C

1) Annual laminations in this anoxic basin allows for 'tree-ring' year counting for much of the record

2. Difference between calendar year and ¹⁴C age due to:

- ¹⁴C production rate
in atmosphere
-Deep mixing rate

Fig. 2. Radiocarbon calibration data from various sources. (A) Calibration data from Cariaco leg 165, holes 1002D and 1002E (blue circles), plotted versus GISP2 calendar age (12) assigned by correlation of detailed paleoclimate records (17) (SOM Text and fig. S2). The thin black line is high-resolution calibration data from Intcal98 tree rings (2, 3) joined at ~12 cal. ka B.P. to the Cariaco PL07-58PC varve chronology (13). Red squares are paired ¹⁴C-U/Th dates from corals (5). Replicate measurements, including overlap between 1002D and 1002E, have been averaged. Light gray shading represents the Cariaco calibration curve shifted within limits of calendar age uncertainty. Dashed line shows equal ¹⁴C-calendar ages. Error bars are 1 σ . (B) Cariaco site 1002 data set plotted versus other published ¹⁴C calibration data. Symbols are the same as above, with additional data from Lake Suigetsu varves (6) (open circles), Bahama speleothem U/Th (7) (open diamonds), and North Atlantic cores PS2644 (9) (upside-down triangles) and SO82-5 (10) (triangles) correlated to GISP2. Error bars for all records are 1 σ .

Figure 5.17. The ¹⁴C age of DIC

in the world's ocean at a depth of 3000 m, determined during the WOCE program in the 1990s. Courtesy of Robert Key, Princeton University; Key et al. (2004). (See

¹⁴C also an 'artificial' radioisotope as a result of nuclear bomb testing

U-Th Decay Series

Element	U-238 series				Th-232 series				U-235 series								
Neptunium	olto					Krig I	En y										
Uranium	U-238 4.47 x 10 y	9	U-234 2.48 x 10				2.3			T &			U-235 7.04 x 10 ⁸				
Protactinium		Pa-234 1.18					23	3			1 8			Pa-231, 3.25 x 10 ⁴		4	
Thorium	Th-234 24.1 d		Th-230 7.52 x 10 y			0.5	66	Th-232 1.40 x 10 ¹⁰ y		Th-228 1.91			Th-231 25.5 hrs		Th-227 18.7		
Actinium	2.0					1.tu			Ac-228 6.13 hrs			Vari		Ac-227 21.8			
Radium			Ra-226, 1.62 x 10 y			-		Ra-228 5.75 y		Ra-224 3.66 d	1				Ra-223		
Francium			CATE:								2			8			390
Radon			Rn-222 3.82 d		in an					Rn-220 55.6 \$				1	Rn-219 3.96 5		
Astatine	1												1 Call				3.81
Polonium			Po-218 3.05 min		Po-214 1.64 x 10 ⁻⁴		Po-210			Po-216 0.15 5	64%	Po-212 3.0 x 10 ⁻⁷			Po-215 1.78 x 10 ⁻³	NG E	
Bismuth		1 International	11.03	Bi-214 19.7		Bi-210					Bi-212 60.6					Bi-211 2.15	
Lead		1011	Pb-214 26.8 min		Pb-210 22.3 y		Pb-206 Stable lead isotope	100		Pb-212 10.6 hrs	36%	Pb-208 Stable lead			Pb-211 36.1 min		Pb-207 Stable lead isotope
Thallium			20 0		C. V. V.						TI-208 3.05 min		2			TI-207 4.77	

Figure 5.19. The relation between the half life of a radioisotope (ordinate) and the characteristic timescale for marine processes (abscissa). The shaded area indicates the range where the two lifetimes are a good match.

Secular Equilibrium

At steady state; $\lambda_{P}[P] = \lambda_{D}[D]$ or $A_{p} = A_{d}$

Scavenging

At steady state; $A_p = A_d + F$

Scavenging and Decay

- Both first order processes
- If decay dominant then $A_P = A_D$
- Where both are important $A_D < A_P$
- Under steady state conditions the activity ratio can be used to estimate the scavenging rate and hence scavenging residence time

Equations for Scavenging Rate

 $\lambda_{\rm P}[P] = \lambda_{\rm D}[D] + F_{\rm D}[D]$ $A_D/A_P = \lambda_D/(\lambda_D + F_D)$ Where $\lambda_{\rm P}$ = decay constant for parent $\lambda_{\rm D}$ = decay constant for daughter [] = atom concentration $F_{\mathbf{D}}$ = scavenging rate constant

Equations for Scavenging Rate (cont.)

Solving for F_D : $F_D = [(1 - A_D/A_P)/(A_D/A_P)] \quad \lambda_D$ or

> $\tau_{1/2} = [(A_D/A_P)/(1 - A_D/A_P)] t_{D_{1/2}}$ Where $\tau_{1/2}$ = scavenging "half-life" $t_{D_{1/2}}$ = half-life of daughter

Table 4-4. Typical activity ratios for daughter-parent pairs in various water types.

	Estuaries	Coastal	Surface Ocean	Deep Sea
²¹⁰ Pb/ ²²⁶ Ra	-	-	>1*	0.4-1.0
230 _{Th/} 234 _U	-	-	<3x10-5	3x10-4
²²⁸ Th/ ²²⁸ Ra	0.01	0.05	0.2	0.5-1.0
²³⁴ Th/ ²³⁸ U	0.2	0.6	>0.9	~ 1
²³¹ Pa/ ²³⁵ U	-	-	-	2x10-3
210 _{Po/210} Pb	-	-	0.5	1.0

*Although ²¹⁰Pb is being removed from surface water by particles, it has an additional source. Radon atoms escaping to the atmosphere from continental soils decay to ²¹⁰Pb. These ²¹⁰Pb atoms are incorporated into aerosols and are brought back to the earth's surface by rain and aerosol impact. The flux of these atoms to the sea surface exceeds by about a factor of 10 the <u>in situ</u> production by radiodecay of ²²⁶Ra in the upper 200 meters of the ocean.

Figure 4-16. Map showing the distribution of ²¹⁰Pb concentrations (in dpm/100 kg) in the surface waters of the Pacific Ocean. The results were summarized by Nozaki, Thompson and Turekian (151).