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Abstract

The traditional solution to the Minkowski problem for polytopes involves two steps.

First, the existence of a polytope satisfying given boundary data is demonstrated. In the

second step, the uniqueness of that polytope (up to translation) is then shown to follow from

the equality conditions of Minkowski’s inequality, a generalized isoperimetric inequality for

mixed volumes that is typically proved in a separate context. In this article we adapt the

classical argument to prove both the existence theorem of Minkowski and his mixed volume

inequality simultaneously, thereby providing a new proof of Minkowski’s inequality that

demonstrates the equiprimordial relationship between these two fundamental theorems of

convex geometry.
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It is easy to see that a convex polygon in R2 is uniquely determined (up to
translation) by the directions and lengths of its edges. This suggests the following,
less easily answered, question in higher dimensions: given a collection of proposed
facet normals and facet areas, is there a convex polytope in Rn whose facets fit the
given data, and, if so, is the resulting polytope unique? This question, along with its
answer, is known as the Minkowski problem.

Denote by Pn the set of convex polytopes in Rn: For PAPn and a unit vector

uARn; denote by Pu the orthogonal projection of P onto the hyperplane u>; and
denote by Pu the support set of P in the direction of u: Since P is a polytope, Pu will
be a face of P: If dim P ¼ n and Pu is a face of dimension n � 1 then Pu is called a
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facet of P; where u is the corresponding facet normal. The volume of a polytope P

will be denoted by VðPÞ: If P is a subset of a hyperplane in Rn; denote the ðn � 1Þ-
dimensional volume of P by vðPÞ:

The Minkowski problem for polytopes concerns the following specific question:
Given a collection u1;y; uk of unit vectors and a1;y; ak40; under what condition
does there exist a polytope P having the ui as its facet normals and the ai as its facet
areas; that is, such that vðPuiÞ ¼ ai for each i?

A necessary condition on the facet normals and facet areas is given by the
following proposition [BF48,Sch93a].

Proposition 1. Suppose that PAPn has facet normals u1; u2;y; uk and corresponding

facet areas a1; a2;y; ak: Then

a1u1 þ?þ akuk ¼ 0: ð1Þ

Proof. If uARn is a unit vector, then jui � ujai is equal to the area of the orthogonal

projection of the ith facet of P onto the hyperplane u>: Summing over all facets
whose outward normals form an acute angle with u; we obtainX

ui �u40

ðui � uÞai ¼ vðPuÞ:

Meanwhile summing analogously over all facets whose outward normals form an
obtuse angle with u yields the value �vðPuÞ:

Let w ¼ a1u1 þ?þ akuk: It now follows that

w � u ¼
X

i

ðui � uÞai ¼
X

ui �u40

ðui � uÞai þ
X

ui �uo0

ðui � uÞai ¼ vðPuÞ � vðPuÞ ¼ 0:

In other words, w � u ¼ 0 for all u; so that w ¼ 0: &

Proposition 1 illustrates a necessary condition for existence of a polytope having a
given set of facet normals and facet areas. The remarkable discovery of Minkowski
was that the converse of Proposition 1 (along with some minor additional
assumptions) is also true. In other words, condition (1) is both necessary and
(almost) sufficient, and, moreover, determines a polytope that is unique up to
translation. To be more precise, we have the following theorem.

Theorem 2 (Solution to the Minkowski problem). Suppose u1; u2;y; ukARn are unit

vectors that span Rn; and suppose that a1; a2;y; ak40: Then there exists a polytope

PAPn; having facet unit normals u1; u2;y; uk and corresponding facet areas

a1; a2;y; ak; if and only if

a1u1 þ?þ akuk ¼ 0:

Moreover, this polytope is unique up to translation.
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Proofs of this theorem (and its many generalizations) abound in the literature. See,
for example, any of [BF48,Lut93,Sch93a]. Once the surface data are suitably defined,
the Minkowski problem can also be generalized to the context of compact convex
sets [Sch93a], to the p-mixed volumes of the Brunn–Minkowski–Firey theory
[Lut93], and to electrostatic capacity [Jer96]. See also [Sch93b] for a extensive survey
of the Minkowski problem and its applications.

Minkowski’s original proof of Theorem 2 involves two steps. First, the existence
of a polytope satisfying the given facet data is demonstrated by a linear optimization
argument. In the second step, the uniqueness of that polytope (up to translation)
is then shown to follow from the equality conditions of Minkowski’s inequality

[BF48,Sch93a], a generalized isoperimetric inequality for mixed volumes that is
typically proved in a separate context. In this article we show instead that
the Minkowski problem and Minkowski’s inequality are two facets of the same
coin.

In the sections that follow, we prove Theorem 2 without assuming Minkowski’s
inequality. Instead, we prove both the existence theorem of Minkowski and his
mixed volume inequality simultaneously, thereby demonstrating the fundamental
and equiprimordial relationship between these two results. More specifically, we use
the near-triviality of Theorem 2 in dimension 2 to prove Minkowski’s inequality (for

R2), and then bootstrap our way to proofs of both Theorem 2 and Minkowski’s
inequality in higher dimension, using dimension 2 as a basis for an induction
argument on dimension. In the process it will be seen that the existence of a solution
to Minkowski’s problem corresponds to the weak version of Minkowski’s inequality
(without conditions for equality), while the uniqueness of that solution corresponds
to the equality conditions of Minkowski’s inequality and its equivalent formulation
as the Brunn–Minkowski inequality.

1. Mixed volumes

A compact convex set K in Rn is determined uniquely by its support function

hK :Rn-R; defined by hKðuÞ ¼ maxxAKfx � ug; where � denotes the standard inner
product on Rn: For K1;K2;y;KmAPn; and real numbers l1; l2;y; lm40; define the
Minkowski linear combination by

l1K1 þ l2K2 þ?þ lmKm ¼ fl1x1 þ?þ lmxm j xiAKig:

The support function of a Minkowski combination is given by

hl1K1þl2K2þ?þlmKm
¼
Xm

j¼1

ljhKj
:

It is not difficult to show that if the convex sets Ki are polytopes then the Minkowski
combination is also a polytope.
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The support function of a single point xARn is given by the inner product: hxðuÞ ¼
x � u: If a compact convex set K is translated by a vector x we have hKþxðuÞ ¼
hKðuÞ þ x � u:

The support function can be used to compute the volume of a polytope, as
described by the following proposition.

Proposition 3. Suppose that PAPn has facet unit normals u1; u2;y; uk and

corresponding facet areas vðPu1Þ; vðPu2Þ;y; vðPuk Þ: Then the volume VðPÞ is given by

VðPÞ ¼ 1

n

Xk

i¼1

hPðuiÞvðPuiÞ: ð2Þ

Proof. If P contains the origin, then (2) follows by summing over the volumes of
each cone having base at a facet Pui of P; apex at the origin, and corresponding
height hPðuiÞ: If P does not contain the origin, then translate P so that it does.
Clearly the volume VðPÞ is invariant under translation, while the translation
invariance of the sum on the right-hand side of (2) follows from Proposition 1. &

The basis of the theory of mixed volumes is the polylinearization of volume with
respect to Minkowski linear combinations: If P1;y;PmAPn and l1;y; lm40; then
Euclidean volume V is a homogeneous polynomial in the positive variables
l1;y; lm; that is,

Vðl1P1 þ?þ lmPmÞ ¼
Xm

i1;y;in¼1

VðPi1 ;y;PinÞli1?lin ; ð3Þ

where each symmetric coefficient VðPi1 ;y;PinÞ depends only on the bodies

Pi1 ;y;Pin :
Given P1;y;PnAPn; the coefficient VðP1;y;PnÞ is called the mixed volume of

the convex polytopes P1;y;Pn: It is well-known, but not trivial, that the mixed
volume VðP1;y;PnÞ is a non-negative continuous function in n variables on the set
Pn; symmetric in the variables Pi; and monotonic with respect to the subset partial
ordering on Pn: If the Pi are all translates of a polytope P; then the mixed volume of
the Pi is equal to the volume of P: In particular, VðP;y;PÞ ¼ VðPÞ:

The mixed volume is also linear in each parameter with respect to Minkowski
sums; that is,

VðaP þ bQ;P2;y;PnÞ ¼ aVðP;P2;y;PnÞ þ bVðQ;P2;y;PnÞ;

for all a; bX0: Moreover, the translation invariance of volume in Rn implies that, if w

is a single point in Rn; then VðP1;y;Pn�1;wÞ ¼ 0; and VðP1;y;Pn�1;Pn þ wÞ ¼
VðP1;y;PnÞ for all polytopes Pi:
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For the special case of two convex polytopes P and Q; denote

ViðP;QÞ ¼ VðP;y;P|fflfflfflffl{zfflfflfflffl}
n�i

;Q;y;Q|fflfflfflfflffl{zfflfflfflfflffl}
i

Þ:

For this case, Eq. (3) is known as Steiner’s formula, specifically,

VðlP þ mQÞ ¼
Xm

i¼0

n

i

� �
ViðP;QÞln�imi ð4Þ

for all l; mX0: Note that in general ViðP;QÞaViðQ;PÞ (except where the dimension
n ¼ 2 or when n is even and i ¼ n=2). However, the symmetry of mixed volumes does
imply that ViðP;QÞ ¼ Vn�iðQ;PÞ: Moreover, ViðP;QÞ is typically not linear in its
parameters with respect to Minkowski sums for dimension n42; with a notable
exception:

V1ðP; aQ1 þ bQ2Þ ¼ aV1ðP;Q1Þ þ bV1ðP;Q2Þ;

for all a; bX0: (That is, V1 is linear in its second parameter only.)
From Steiner’s formula (4), the volume formula (2), and elementary properties of

polynomials, it can be shown that, for iX1;

ViðP;QÞ ¼ 1

n

X
u

hQðuÞvðPu;y;Pu|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�i

;Qu;y;Qu|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
i�1

Þ; ð5Þ

where the sum is taken over all u such that P þ Q has a non-degenerate facet in the
direction of u: In particular,

V1ðP;QÞ ¼ 1

n

X
u

hQðuÞvðPuÞ:

Mixed volumes are typically used to describe and measure the relation-
ship between a compact convex set and its orthogonal projections onto sub-
spaces. Such applications derive in part from the formula for the mixed volume
of polytope P with a line segment ox having endpoints at the origin o and a point
xARn: For PAPn and a non-zero vector xARn denote by Px the orthogonal

projection of the set P onto the subspace x>: By the Cavalieri principle for volume
we have

VðP þ oxÞ ¼ VðPÞ þ jxjvðPxÞ;

for all PAPn and all vectors xa0: It follows that all of the terms in Steiner’s formula
(4) vanish except two, that is,

VðP þ oxÞ ¼ VðPÞ þ nVðP;y;P; oxÞ ¼ VðPÞ þ nV1ðP; oxÞ;

ARTICLE IN PRESS
D.A. Klain / Advances in Mathematics 185 (2004) 270–288274



so that nV1ðP; oxÞ ¼ jxjvðPxÞ: In particular, if uARn is a unit vector then

nV1ðP; ouÞ ¼ vðPuÞ: ð6Þ

A detailed treatment of these and other properties of mixed volumes can be found
in [BF48,Sch93a].

2. Existence

In this section we describe the solution to the existence part of the Minkowski
problem. The proof of the Minkowski Existence Theorem presented in this
section is essentially the original proof by Minkowski [BF48]. Constructions in
this proof will then provide the tools necessary to describe a new proof of both
the Uniqueness Theorem and the Brunn–Minkowski inequality in the sections
that follow.

Theorem 4 (Minkowski Existence Theorem). Suppose u1; u2;y; ukARn are unit

vectors that do not all lie in a hyperplane, and suppose that a1; a2;y; ak40: If

a1u1 þ?þ akuk ¼ 0; ð7Þ

then there exists a polytope PAPn having facet unit normals u1; u2;y; uk and

corresponding facet areas a1; a2;y; ak:

Note that the spanning assumption on the vectors ui in Theorem 4 implies that
kXn þ 1:

Proof. For all h ¼ ðh1;y; hkÞARk; let H be the corresponding region of Rn given by

H ¼ fxARn j x � uiphig:

Evidently H is a closed convex region whose facet unit normals, if any, will form a
subset of fu1;y; ukg: Condition (7), along with the spanning condition on the ui;
guarantees that H will be bounded, that is, H is a (possibly empty) polytope. For
each i ¼ 1;y; k; denote by bi the area of the facet of H having normal ui: If there is
no such facet, set bi ¼ 0: Note that

VðHÞ ¼ 1

n

Xk

i¼0

hibi:

Define a map F :Rk-R by

FðhÞ ¼ Fðh1;y; hkÞ ¼
1

n

Xk

i¼1

hiai:
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Condition (7) implies that F is translation invariant in the following sense: For all
wARn;

Fðh1 þ w � u1;y; hk þ w � ukÞ ¼ FðhÞ: ð8Þ

In order to find the desired polytope P we will first show that F can be minimized,
subject to the constraint VðHÞX1: The minimizing vector h for F will then provide
the polytope we seek (after suitable scaling).

To this end, denote

H ¼ fh j hiX0g-fVðHÞX1g:

Note that H lies in the positive orthant of Rn: Since F is a positive linear
functional and the volume V is continuous, it follows that H is closed, so that F
must attain a minimum m ¼ Fðh
Þ for some h
AH: Let H
 denote the polytope
associated to the minimizing vector h
: Since h
AH; it follows that VðH
ÞX1 so that
some hi40: Hence, m40:

If VðHÞX1; then there exists w such that H þ w contains the origin in its interior,

so that FðhÞ ¼ Fðh þ ðw � uiÞk
i¼1ÞXFðh
Þ ¼ m by (8). In other words,

m ¼ minfFðhÞ j VðHÞX1g:

Suppose VðH
Þ ¼ e41: In this case Fðe�
1
nh
Þ ¼ e�

1
nFðh
ÞoFðh
Þ; while

Vðe�
1
nH
Þ ¼ 1; contradicting the minimality of Fðh
Þ: It follows that

VðH
Þ ¼ 1:

Let a ¼ ða1;y; akÞ and b ¼ ðb
1;y; b
kÞ; where the values of b
i are derived from

the facets of H
: We will show that

1

n
a � X ¼ m; ð9Þ

1

n
b � X ¼ 1 ð10Þ

are equations for the same hyperplane, so that the vectors a and b are parallel, with

b ¼ 1
m
a: This will imply that H
 satisfies the requirements of the theorem after

suitable scaling.
Since Fðh
Þ ¼ m and VðH
Þ ¼ 1; the point h
 lies in both hyperplanes, that is, the

hyperplanes (9) and (10) must indeed intersect.
Next, suppose there is another point h

 in (9) with corresponding polytope H

;

that is,

m ¼ Fðh

Þ ¼ 1

n

Xk

i¼0

h


i ai:
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The minimality condition on m implies that VðH

Þp1: For 0plp1; let Hl denote
the polytope corresponding to the vector lh
 þ ð1 � lÞh

: The linearity of F now
implies that

Fðlh
 þ ð1 � lÞh

Þ ¼ m;

and the minimality condition on m again implies that VðHlÞp1: But

lH
 þ ð1 � lÞH

DHl;

so that

VðlH
 þ ð1 � lÞH

ÞpVðHlÞp1 ¼ VðH
Þ

for all 0plp1: On expanding Steiner’s formula (4) for VðlH
 þ ð1 � lÞH

Þ we
have

Xn

i¼0

Vn�iðH
;H

Þ
n

i

� �
lið1 � lÞn�i ¼ VðlH
 þ ð1 � lÞH

Þp1; ð11Þ

for all 0plp1: On taking derivatives of the left-hand side term of (11) at l ¼ 1; we
obtain

1XV1ðH
;H

Þ ¼ VðH
;y;H
;H

Þ ¼ 1

n

Xk

i¼0

h


i bi:

It follows that h

 lies in one half-space bounded by (10). That is, the entire
hyperplane (9) lies in one half-space bounded by (10). This can only occur if the two
hyperplanes are parallel. Since they intersect, the two hyperplanes must be identical,

with b ¼ 1
m
a:

Now let

P ¼ m
1

n�1H
:

The polytopes P and H
 share the same facet normals ui; while vðPuiÞ ¼
ðm

1
n�1Þn�1bi ¼ mbi ¼ ai; as required. &

In the previous argument we obtained a polytope P ¼ m
1

n�1H
 such that VðH
Þ ¼ 1:
It follows that

VðPÞ ¼ m
n

n�1VðH
Þ ¼ m
n

n�1:

Moreover, for all h such that VðHÞ ¼ 1; we have shown that

V1ðP;HÞ ¼ 1

n

X
i

hiai ¼ FðhÞXFðh
Þ ¼ m ¼ VðPÞ
n�1

n VðHÞ
1
n:
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Hence, if Q is a polytope in Rn such that VðQÞ ¼ 1 and the facet normals of Q form a
subset of the facet normals of P

V1ðP;QÞXVðPÞ
n�1

n VðQÞ
1
n: ð12Þ

From the homogeneity of V1 and V it follows that (12) holds regardless of the value
of VðQÞ: Note, however, that (12) has still only been demonstrated for the special
case in which P is a minimizer for the linear functional F and the facet normals of Q

form a subset of the facet normals of P:
We will generalize inequality (12) further in the sections that follow.

3. Uniqueness in R2

Volume in R2 is commonly referred to as area, and we will denote by AðKÞ the

area of a region KDR2: In this instance the mixed volume formula (4) for the volume
(area) of a Minkowski sum becomes

AðlK þ mLÞ ¼ AðKÞl2 þ 2AðK ;LÞlmþ AðLÞm2; ð13Þ

for all l; mX0: Note also that V1ðK ;LÞ ¼ AðK ;LÞ: Since mixed volumes are
symmetric in their entries, AðK ;LÞ ¼ AðL;KÞ; and so V1ðK ;LÞ ¼ V1ðL;KÞ for all

K ;LAP2: Recall that this remarkable symmetry does not hold in higher dimension.

The solution to the Minkowski problem in R2 turns out to be almost trivial to
derive. Given a collection of unit normals ui and corresponding edge lengths ai40;
we can rotate the edge normals counter-clockwise by 90� and lengthen each by its
given edge length, transforming the normals into actual edges. Assuming we have
listed the normals in counter-clockwise order (to prevent ‘‘looping’’), we can just lay
these oriented edges end-to-end and construct the polygonal closed curve that
describes the corresponding polygon in a unique way up to translation; i.e.
depending only on where we set down the pen to draw the first edge.

The details, which require some bookkeeping, are described as follows.

Theorem 5 (Existence theorem for polygons). Suppose u1; u2;y; ukAR2 are unit

vectors that span R2; and suppose that a1; a2;y; ak40: There exists a polygon PAP2

having edge unit normals u1; u2;y; uk; and corresponding edge lengths a1; a2;y; ak; if

and only if

a1u1 þ?þ akuk ¼ 0: ð14Þ

Moreover, such a polygon P is unique up to translation.

Note that the spanning assumption on the vectors ui in Theorem 4 implies that
kX3:
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Proof of Theorem 5. Suppose that a polygon P has boundary data given by the

normals ui and edge-lengths ai: Let f denote the counter-clockwise rotation of R2 by
the angle p=2: For each i let vi ¼ fðaiuiÞ: Then each vi is congruent by a translation to
the ith edge of the polygon P: Since the boundary of a convex polygon is a simple
closed curve, we have

v1 þ?þ vk ¼ 0:

On applying f�1 to this identity, we obtain (14).
Conversely, suppose that a family of unit vectors ui and positive real numbers ai

satisfy (14), where the vectors ui spanR2: As above, let vi ¼ fðaiuiÞ for each i:
Assume also that the vectors ui (and therefore, the vectors vi) are indexed in counter-
clockwise order around the circle. We will construct a polygon P having boundary
data given by the normals ui and edge-lengths ai: Condition (14) implies that v1 þ
?þ vk ¼ 0:

Denote

x1 ¼ v1

x2 ¼ v1 þ v2

^

xk ¼ v1 þ?þ vk ¼ o

and let P denote the convex hull of the points x1; x2;y; xk (where xk ¼ o; the
origin). We will show that each xi is an extreme point of P: It will then follow that
the xi are the vertices of P; so that the edges of P are congruent to the vectors vi; as
required.

To show that each xi is an extreme point, it is sufficient to consider the case of
xk ¼ o: Moreover, since convex dependence relations are invariant under rigid
motions, we may assume without loss of generality that v1 points along the positive
x-axis. Let #; ¼ ð0; 1Þ: Note that x1 � #; ¼ v1 � #; ¼ 0; and that if vs � #;o0 and sptpk

then vt � #;o0; since the vi are arranged in counter-clockwise order. Moreover, sinceP
vi ¼ o and since the vi spanR2; we must have v2 � #;40:
Now suppose that o is not an extreme point of P: In this case, o ¼ a1x1 þ?þ

akxk; where each aiX0 and a1 þ?þ ak ¼ 1: Note that

0 ¼ o � #; ¼
X

i

aiðxi � #; Þ: ð15Þ

Since x2 � #;40; it follows from (15) that some xs � #;o0: Because vi � #;o0 for all iXs;
we have

0 ¼ o � #; ¼ xk � #; ¼ xs þ
X
i4s

vi

 !
� #;o0;
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a contradiction. It follows that o (and similarly each other xi) must be an extreme
point of P: It also follows that xs � #;X0 for all s; so that v1 (and similarly each other

vi) must be parallel to edges of P:
Since we have given an explicit reconstruction of the boundary of P from the

normals ui and edge lengths ai; starting from a base point—in this case the origin o—
it also follows that such a polygon P is unique up to the choice of that base point, in
other words, up to translation. &

Equality conditions for geometric inequalities frequently involve the equivalence
relation of homothesis. Two subsets P and Q of Rn are said to be homothetic if there
exist a40 and xARn such that P ¼ aQ þ x: In other words, homothetic sets differ
only by translations and dilations.

Corollary 6 (Minkowski’s inequality in R2). Suppose that P and Q are polygons in

R2: Then

AðP;QÞ2XAðPÞAðQÞ:

If P and Q have non-empty interiors, then equality holds if and only if P and Q are

homothetic.

Proof. If AðPÞ ¼ 0 or AðQÞ ¼ 0 then the inequality is trivial.
Suppose that both P and Q have non-empty interiors. From the quadratic

homogeneity of area we may assume without loss of generality that AðPÞ ¼ AðQÞ ¼ 1:
It then suffices to show that AðP;QÞX1; with equality if and only if P and Q are
translates.

Let a1;y; ak denote the edge lengths for the polygon P; where the correspond-
ing edge normals for P are u1;y; uk: Theorem 5 implies that, up to translation, P

is indeed the (unique) polygon that provides a minimizer for the functional F
in the proof of Theorem 4, where F is now defined using the edge normals
and lengths for the polygon P: It follows that inequality (12) applies to the
polygon P:

Note that we cannot immediately apply (12) to AðP;QÞ; because the vectors ui

may not be edge unit normals for Q: Instead, let

Q̂ ¼
\

i

fxARn j x � uiphQðuiÞg:

Evidently QDQ̂; so that AðQ̂ÞXAðQÞ ¼ 1: Meanwhile h
Q̂
ðuiÞphQðuiÞ for all i; by the

definition of Q̂: Since the facet normals of Q̂ do indeed form a subset of the facet

normals of P; it follows from (12) that AðP; Q̂Þ ¼ V1ðP; Q̂ÞX1: Hence,

AðP;QÞ ¼ V1ðP;QÞ ¼
X

i

hQðuiÞaiX

X
i

h
Q̂
ðuiÞai ¼ V1ðP; Q̂Þ ¼ AðP; Q̂ÞX1:
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For the equality case, suppose that AðP;QÞ ¼ 1 ¼ AðP;PÞ: This implies that

AðP; Q̂Þ ¼ 1 as well, so that both P and Q̂ provide minimizers for the function F in

the proof of Theorem 4. It follows that P and Q̂ have the same facet data a: Theorem

5 then implies that P ¼ Q̂ up to translation, so that AðQ̂Þ ¼ 1 ¼ AðQÞ: Since QDQ̂;

it follows that Q̂ ¼ Q; so that Q ¼ P up to translation. &

Minkowski’s inequality (Corollary 6) is perhaps better known through its
equivalent formulation, which describes area as a concave function with respect to
Minkowski combinations.

Corollary 7 (Brunn–Minkowski inequality in R2). Suppose that P and Q are

polygons in R2: Then for 0plp1;

Aðð1 � lÞP þ lQÞ1=2Xð1 � lÞAðPÞ1=2 þ lAðQÞ1=2:

If P and Q have non-empty interiors, then equality holds if and only if P and Q are

homothetic.

Proof. If AðPÞ ¼ 0 or AðQÞ ¼ 0 then the inequality is trivial.
Suppose that P and Q have non-empty interiors. Combining Steiner’s formula for

area (13) with Minkowski’s inequality (Corollary 6) yields

Aðð1 � lÞP þ lQÞ ¼ ð1 � lÞ2AðPÞ þ 2lð1 � lÞAðP;QÞ þ l2AðQÞ

X ð1 � lÞ2AðPÞ þ 2lð1 � lÞAðPÞ1=2AðQÞ1=2 þ l2AðQÞ

¼ ½ð1 � lÞAðPÞ1=2 þ lAðQÞ1=22;

so that

Aðð1 � lÞP þ lQÞ1=2Xð1 � lÞAðPÞ1=2 þ lAðQÞ1=2;

with equality conditions identical to those of Minkowski’s inequality (Corol-
lary 6). &

4. Uniqueness in Rn

The following lemma will contribute to the general case of Rn; for nX3: Recall

that Ku denotes the orthogonal projection of a polytope K onto the hyperplane u>:

Lemma 8 (Rogers’ Lemma). Suppose that K and L are convex polytopes in Rn; where

nX3: Suppose also that, for each unit vector u; we have Ku ¼ Lu up to translation.

Then there exists a vector x such that K ¼ L þ x: That is, K ¼ L up to translation.

This lemma is a special case of a theorem of Rogers [Rog65].
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Proof of Lemma 8. Translate K and L into the positive orthant of Rn so that each
coordinate hyperplane is a supporting hyperplane for both K and L: From here it
suffices to show that K ¼ L:

Let e1;y; en denote the standard basis for Rn: The hypotheses of the lemma assert

that Ke1
¼ Le1

up to translation. Since the coordinate hyperplanes of Rn�1 support
Ke1

and Le1
; it follows that the required translation is trivial (i.e. the zero vector) and

Ke1
¼ Le1

identically. Similarly Kei
¼ Lei

for each i ¼ 1;y; n: It follows that hKei
¼

hLei
for each i: Since the support function hKei

is obtained by restricting the support

function hK to the hyperplane e>i ; it follows that hKðwÞ ¼ hLðwÞ for all

wAe>1 ,?,e>n :
Suppose that uARn is a unit vector that is not contained in any coordinate

hyperplane e>i : Since Ku ¼ Lu up to translation, there exists xAu> such that

hKu
ðwÞ ¼ hLu

ðwÞ þ x � w for all wAu>:

But hKu
ðwÞ ¼ hKei

ðwÞ ¼ hLei
ðwÞ ¼ hLu

ðwÞ for all wAu>-e>i ; so that x � w ¼ 0 for

all wAu>-e>i : In other words, xAðu>-e>i Þ> ¼ Spanðu; eiÞ for each i: The

assumption that uee>3 implies that Spanðu; e1ÞaSpanðu; e2Þ; so that

xASpanðu; e1Þ-Spanðu; e2Þ ¼ SpanðuÞ:

Because xAu>; it now follows that x ¼ 0; and that

hKðuÞ ¼ hKu
ðwÞ ¼ hLu

ðwÞ ¼ hLðuÞ

for all wAu>; provided u is not contained in any coordinate hyperplane. Because
support functions are continuous, it then follows that hK ¼ hL and that K ¼ L: &

The proof of uniqueness for the solution to the Minkowski problem and the
proofs of the Minkowski and Brunn–Minkowski inequalities for dimensions greater
than two will proceed according to the following inductive scheme:

1. The Minkowski and Brunn–Minkowski inequalities in dimension n � 1 will be
used to prove the uniqueness of the solution to the Minkowski problem in
dimension n:

2. The uniqueness of the solution to the Minkowski problem in dimension n will
then imply Minkowski’s inequality in dimension n:

3. Minkowski’s inequality in dimension n will then imply the Brunn–Minkowski
inequality in dimension n:

The base case for this inductive argument was treated in the previous section, where
both the Minkowski problem and the (Brunn–)Minkowski inequalities were
established for dimension 2.

Theorem 9 (Minkowski’s Uniqueness Theorem). Suppose that K and L are polytopes

in Rn; where nX3; and suppose also that K and L solve the Minkowski problem for
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facet unit normals u1;y; uk and corresponding facet areas a1;y; ak: Then K ¼ L up

to translation.

Proof. Theorem 4 asserts that there exists a polytope P that minimizes the functional
FðhÞ (subject to the constraint VðHÞX1) and has the desired facet normals and facet
areas. It is therefore sufficient to show that K ¼ P up to translation (so that the same
would hold for L).

Since K and P share the same corresponding facet areas ai;

V1ðK ;QÞ ¼ 1

n

X
i

hQðuiÞai ¼ V1ðP;QÞ;

for all polytopes Q: In particular,

VðKÞ ¼ V1ðK ;KÞ ¼ V1ðP;KÞ and VðPÞ ¼ V1ðP;PÞ ¼ V1ðK ;PÞ:

It follows from Steiner’s formula (4) that

VðK þ PÞ ¼VðKÞ þ nV1ðK ;PÞ þ
Xn�2

i¼2

n

i

� �
ViðK ;PÞ

 !
þ nV1ðP;KÞ þ VðPÞ

¼ ðn þ 1ÞVðKÞ þ ðn þ 1ÞVðPÞ þ
Xn�2

i¼2

n

i

� �
ViðK ;PÞ: ð16Þ

Note that, for each i; the facet ðK þ PÞui of the polytope K þ P having unit normal ui

is given by

ðK þ PÞui ¼ Kui þ Pui :

Meanwhile,

VðK þ PÞ ¼V1ðK þ P;K þ PÞ ¼ V1ðK þ P;KÞ þ V1ðK þ P;PÞ

¼ 1

n

X
i

hKðuiÞvðKui þ PuiÞ þ
X

i

hPðuiÞvðKui þ PuiÞ
 !

; ð17Þ

where v denotes ðn � 1Þ-dimensional volume.
Steiner’s formula (4) applied in dimension ðn � 1Þ asserts that

vðKui þ PuiÞ ¼
Xn�1

j¼0

n � 1

j

� �
vjðKui ;PuiÞ;

where we denote

vjðKui ;PuiÞ ¼ vðKui ;y;Kui|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n�j�1

;Pui ;y;Pui|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
j

Þ;
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the ðn � 1Þ-dimensional mixed volume, and where vðKui ;y;KuiÞ ¼ vðKuiÞ ¼ ai ¼
vðPuiÞ ¼ vðPui ;y;PuiÞ: Minkowski’s inequality in dimension ðn � 1Þ then implies
that

vðKui ;y;Kui ;PuiÞXvðKuiÞ
n�2
n�1vðPuiÞ

1
n�1 ¼ a

n�2
n�1
i a

1
n�1
i ¼ ai

and similarly vðPui ;y;Pui ;KuiÞXai; with equality if and only if the Pui and Kui are
translates. Hence,

vðKui þ PuiÞXðn þ 1Þai þ
Xn�3

j¼1

n � 1

j

� �
vjðKui ;PuiÞ ð18Þ

and similarly

vðKui þ PuiÞXðn þ 1Þai þ
Xn�2

j¼2

n � 1

j

� �
vjðKui ;PuiÞ ð19Þ

with equality in either case if and only if the Pui and Kui are translates.
Combining (18) and (19) with (17) yields

VðK þ PÞ ¼ 1

n

X
u

ðhKðuÞvðKu þ PuÞ þ hPðuÞvðKu þ PuÞÞ

X
1

n

X
i

ðhKðuiÞvðKui þ PuiÞ þ hPðuiÞvðKui þ PuiÞÞ

X
1

n

X
i

hKðuiÞ ðn þ 1Þai þ
Xn�2

j¼2

n � 1

j

� �
vjðKui ;PuiÞ

 !

þ 1

n

X
i

hPðuiÞ ðn þ 1Þai þ
Xn�3

j¼1

n � 1

j

� �
vjðKui ;PuiÞ

 !

¼ ðn þ 1ÞVðKÞ þ ðn þ 1ÞVðPÞ þ
Xn�2

j¼2

n

j

� �
VjðK ;PÞ: ð20Þ

The first inequality is due to the possibility that K þ P has facet normal directions u

that did not appear for K (and P) separately, while the second inequality follows
from (18) and (19). The last equation in (20) follows from (5) and the fact that
VjðK;PÞ ¼ Vn�jðP;KÞ: Note that equality holds throughout sequence (20) of

inequalities if and only if the facets Pui and Kui are translates for each ui and the facet
normals of K þ P are identical to the facet normals of K (and P). But (16) asserts
that equality indeed holds! Hence, Pui and Kui are translates for each ui; and K þ P

contains no additional facet normals (not already accounted for by K and P).
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We have shown that the polytope 1
2 K þ 1

2 P has facet normals u1;y; uk: Moreover,
1
2

K þ 1
2

P has facet areas a1;y; ak; because the corresponding facets of K and P in

each facet normal direction are translates. This implies that

V1ðð1=2ÞK þ ð1=2ÞP;QÞ ¼ V1ðK ;QÞ ¼ V1ðL;QÞ;

for all polytopes Q: In particular, for any unit vector uARn;

V1ðð1=2ÞK þ ð1=2ÞP; ouÞ ¼ V1ðK ; ouÞ ¼ V1ðP; ouÞ:

It follows from (6) that

vðð1=2ÞKu þ ð1=2ÞPuÞ ¼ vðKuÞ ¼ vðPuÞ:

In other words, the orthogonal projections Ku and Pu satisfy the equality case of the

Brunn–Minkowski inequality in Rn�1: From the equality conditions of the Brunn–
Minkowski inequality in dimension n � 1 we have Ku ¼ Pu (up to translation) for
all u: Since dimðPÞ ¼ dimðKÞX3; we have K ¼ P (up to translation) by Rogers’
Lemma 8. &

Theorem 10 (Minkowski’s inequality). Suppose that P and Q are polytopes in Rn:
Then

V1ðP;QÞn
XVðPÞn�1

VðQÞ:

If P and Q have non-empty interiors, then equality holds if and only if P and Q are

homothetic.

Proof. If VðPÞ ¼ 0 or VðQÞ ¼ 0 then the inequality is trivial.
Suppose that both P and Q have non-empty interiors. Recall that n-dimensional

volume is positively homogeneous of degree n; that is, for all a; b40 and all

polytopes P;Q; we have VðaPÞ ¼ anVðPÞ and V1ðaP; bQÞ ¼ an�1bV1ðP;QÞ: It is
therefore sufficient to show that, if VðPÞ ¼ VðQÞ ¼ 1; then V1ðP;QÞX1; with
equality iff P and Q are translates.

Let a1;y; ak denote the facet areas of the polytope P; where the facet normals for
P are u1;y; uk: The Uniqueness Theorem 9 implies that, up to translation, P is
indeed the unique polytope that provides a minimizer for the functional F in the
proof of Theorem 4, where F is defined using the facet normals and areas for the
polytope P: It follows that inequality (12) applies to the polytope P:

We cannot immediately apply (12) to V1ðP;QÞ; because the ui may not be facet
normals for Q: Instead, let

Q̂ ¼
\

i

fxARn j x � uiphQðuiÞg:
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Evidently QDQ̂; so that VðQ̂ÞXVðQÞ ¼ 1: Meanwhile h
Q̂
ðuiÞphQðuiÞ for all i: Since

the facet normals of Q̂ do form a subset of the facet normals of P; it follows from

(12) that V1ðP; Q̂ÞXVðPÞ
n�1

n VðQ̂Þ
1
nX1: Hence,

V1ðP;QÞ ¼
X

i

hQðuiÞaiX

X
i

h
Q̂
ðuiÞai ¼ V1ðP; Q̂ÞX1:

For the equality case, suppose that V1ðP;QÞ ¼ 1 ¼ V1ðP;PÞ: This implies that

V1ðP; Q̂Þ ¼ 1 as well. Since VðQ̂ÞX1; this implies that both P and Q̂ provide

minimizers for the function F in the proof of Theorem 4. It follows that P and Q̂

have the same facet unit normals and corresponding facet areas. Theorem 9 then

implies that P ¼ Q̂ up to translation, so that VðQ̂Þ ¼ 1 ¼ VðQÞ: Since QDQ̂; it

follows that Q̂ ¼ Q; so that Q ¼ P up to translation. &

Theorem 11 (Brunn–Minkowski inequality). Suppose that P and Q are polytopes in

Rn: For 0plp1;

Vðð1 � lÞP þ lQÞ1=n
Xð1 � lÞVðPÞ1=n þ lVðQÞ1=n:

If P and Q have non-empty interiors, then equality holds if and only if P and Q are

homothetic.

Proof. The inequality is trivial if VðPÞ ¼ 0 or if VðQÞ ¼ 0:
Suppose that both P and Q have non-empty interiors. From the homogeneity of

volume it is again sufficient to prove that Vðð1 � lÞP þ lQÞX1 when VðPÞ ¼
VðQÞ ¼ 1; with equality if and only if P and Q are translates.

Recall that V1ðP;PÞ ¼ VðPÞ for all P: Suppose that VðPÞ ¼ VðQÞ ¼ 1: From the
linearity of the functional V1 in its second parameter, we obtain

Vðð1 � lÞP þ lQÞ ¼V1ðð1 � lÞP þ lQ; ð1 � lÞP þ lQÞ

¼ ð1 � lÞV1ðð1 � lÞP þ lQ;PÞ þ lV1ð1 � lÞP þ lQ;QÞ

X ð1 � lÞVðð1 � lÞP þ lQÞ
n�1

n VðPÞ
1
n

þ lVðð1 � lÞP þ lQÞ
n�1

n VðQÞ
1
n

¼Vðð1 � lÞP þ lQÞ
n�1

n ;

where the inequality follows from Minkowski’s inequality (Theorem 10). It follows
that

Vðð1 � lÞP þ lQÞX1;
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where the equality conditions are identical to those of Minkowski’s inequality
(Theorem 10). &

Remark. Although it is not needed here, we observe that the Brunn–Minkowski
Theorem is easily seen to be equivalent to the Minkowski inequality. We have shown
that the Minkowski inequality implies the Brunn–Minkowski Theorem. For the
reverse implication, suppose that VðPÞ ¼ VðQÞ ¼ 1: By Brunn–Minkowski, Vðð1 �
lÞP þ lQÞX1 for all 0plp1: It follows that the polynomial in l obtained from the
Steiner formula (4) for Vðð1 � lÞP þ lQÞ is decreasing at l ¼ 1; so that its derivative
at l ¼ 1 is non-positive. This in turn implies, after a simple calculation, that

V1ðP;QÞX1:

This completes the network of implications founded by the two-dimensional case,
and proceeding inductively by dimension as follows:

Minkowski’s inequality 3 Brunn2Minkowski inequality

in dimension ðn � 1Þ in dimension ðn � 1Þ
+

Uniqueness Theorem

in dimension n

+
Minkowski’s inequality

in dimension n

Since any convex body in Rn can be approximated by polytopes, the continuity of
mixed volumes implies that the inequalities of Theorems 10 and 11 hold for compact
convex sets as well as polytopes. However, this continuity argument does not

demonstrate that the equality conditions hold in that more general context. It is
true, however, that the equality conditions for the Brunn–Minkowski and
Minkowski inequalities in the case of general convex bodies are the same
as for polytopes (homothety) [Sch93a]. (For an approach similar to the one
presented here, see [Kla02].) Moreover, these inequalities have inspired numerous
applications [BZ88,Gar95,Gro96,LvGM96,LO95,San76,Sch93a,Tho96], generaliza-
tions [BZ88,BL76,Lut93,Sch93a], and analogues [Bor83,CJL96].
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