$\qquad$

Read the problems carefully. Please show all work.
One sheet of notes (maximum size $8.5 \times 11$ inches, double-sided) is permitted.
Calculators and other electronic devices are not permitted on this exam.

1. Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be an orthonormal basis for $\mathbb{R}^{3}$, and let

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}
$$

Suppose that $\|\mathbf{x}\|=10$, that $\mathbf{x} \cdot \mathbf{u}_{1}=8$, and that $\mathbf{x} \perp \mathbf{u}_{2}$.
What are the possible values of $c_{1}, c_{2}, c_{3}$ ?

Solution: Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set, we have

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } i \neq j,
$$

and

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{i}=1 \quad \text { for each } i .
$$

It follows that

$$
\mathbf{x} \cdot \mathbf{u}_{i}=c_{i} \text { for each } i .
$$

In particular,

$$
c_{1}=\mathbf{x} \cdot \mathbf{u}_{1}=8
$$

and

$$
c_{1}=\mathbf{x} \cdot \mathbf{u}_{2}=0, \quad \text { since } \mathbf{x} \perp \mathbf{u}_{2}
$$

Since $\|\mathbf{x}\|=10$ and the $\mathbf{u}_{\mathbf{i}}$ are mutually orthogonal, the Pythagorean Theorem applies, and

$$
100=\|\mathbf{x}\|^{2}=\mathbf{x} \cdot \mathbf{x}=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}
$$

whence

$$
c_{3}^{2}=100-c_{1}^{2}-c_{2}^{2}=100-8^{2}-0^{2}=36,
$$

and $c_{3}= \pm 6$.
Conclusion:

$$
c_{1}=8, c_{2}=0, c_{3}= \pm 6
$$

2. Suppose that $a, b, c$ are constants, and that the matrix

$$
A=\left[\begin{array}{ll}
0 & a \\
b & c
\end{array}\right]
$$

is an orthogonal matrix.
What are the possibilities for the matrix $A$ ?
List all possible examples, with the actual numerical entries of $A$ in each case, and explain briefly why your answer is complete and correct.

Solution: If $A$ is an orthogonal matrix, then the first column must be a unit vector. This means that

$$
0^{2}+b^{2}=1,
$$

so that $b= \pm 1$.
Moreover, the columns of $A$ must be perpendicular, and have dot product zero. This means that

$$
0 a+b c=0
$$

so that $0=b c= \pm c$, and so $c=0$.
Finally, the second column must be a unit vector. This means that

$$
1=a^{2}+c^{2}=a^{2}+0^{2}=a^{2}
$$

so that $a= \pm 1$.
Conclusion:

$$
a= \pm 1, b= \pm 1, c=0
$$

so that

$$
A \in\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\right\}
$$

3. Let $L$ be the line passing through the origin and the vector $(1,-1,1,-1)$ in $\mathbb{R}^{4}$.
(a) Find the projection matrix for the subspace (line) $L$.

Solution:

$$
\text { Let } \quad A=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad \text { so that } \quad A^{T} A=\left[\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=4 \text {, }
$$

and

$$
\left(A^{T} A\right)^{-1}=\frac{1}{4} .
$$

The projection matrix $Q$ is now given by

$$
\begin{gathered}
Q=A\left(A^{T} A\right)^{-1} A^{T}=\frac{1}{4} A A^{T}=\frac{1}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right] \\
=\frac{1}{4}\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4}
\end{array}\right]
\end{gathered}
$$

(b) Find the reflection matrix for that same line $L$.

Solution: If $H$ is the reflection matrix, then

$$
H=2 Q-I,
$$

where $Q$ is the projection matrix from part (a) and $I$ is the $4 \times 4$ identity matrix. Therefore,

$$
\begin{aligned}
H= & {\left[\begin{array}{cccc}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right]-\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& =\left[\begin{array}{cccc}
-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
-1 & -1 & 1 & -1 \\
-1 & -1 & -1 & 1 \\
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

4. Let $\mathbf{v}=(1,1,3,3)$ and let $\mathbf{w}=(2,1,-2,0)$. Let $\mathbf{u}$ be the unit vector pointing in the direction of $\mathbf{w}$. Compute the following:
(a) $\mathbf{v} \cdot \mathbf{w}=-3$
(b) $\|\mathbf{u}\|=1$
(c) $\mathbf{u} \cdot \mathbf{w}=3$
(d) $\operatorname{Proj}_{\mathbf{u}}(\mathbf{v})=\left(-\frac{2}{3},-\frac{1}{3}, \frac{2}{3}, 0\right)$
(e) If $\theta$ is the angle between $\mathbf{v}$ and $\mathbf{w}$ then $\cos \theta=-\frac{1}{\sqrt{20}}=-\frac{1}{2 \sqrt{5}}=-\frac{\sqrt{5}}{10}$
