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1. Orthogonal matrices and orthonormal sets

An n x n real-valued matrix A is said to be an orthogonal matriz if
ATA=1,
or, equivalently, if AT = A~L.

If we view the matrix A as a family of column vectors:

A=| Ay | Ay |- | Ay
then
AT ATA; AT A,
AT A A% mw A A2TA1 A2TA2
= . 1 20" 3 = . .
Anj A;;Al A;;AQ

So the condition (1) asserts that A is an orthogonal matrix iff
1 ifi=y
Ta _ J
‘%Af‘{o ifi#j

that is, iff the columns of A form an orthonormal set of vectors.

Orthogonal matrices are also characterized by the following theorem.

AT 4,
AT A,

AT A,

Theorem 1 Suppose that A is an nxn matriz. The following statements are equivalent:

1. A is an orthogonal matriz.
2. |AX| = |X]| for all X € R".

3. AX-AY =X .Y forall X,Y € R".

In other words, a matrix A is orthogonal iff A preserves distances and iff A preserves

dot products.

Proof: We will prove that 1. = 2. = 3. = 1.



1. = 2. : Suppose that A is orthogonal, so that A”A = I. For all column vectors
X € R", we have

AX]? = (AX)TAX = XTATAX = XTIX = XTX = |X|?,
so that |[AX| = | X]|.

2. = 3. : Suppose that A is a square matrix such that |[AX| = |X]| for all X € R".
Then, for all X,Y € R, we have

X +YP=X4+T(X+Y)= XX +2XTY +YTY = | X* +2XTY + [V ]?
and similarly,
JAX +Y)? = |[AX + AY | = (AX + AY)T(AX + AY) = |AX > +2(AX)TAY 4 |AY |2

Since |AX| = |X| and |AY| = |Y] and |A(X +Y)| = | X +Y], it follows that (AX)TAY =
XTY. In other words, AX -AY =X .Y,

3. = 1.:Suppose that A is a square matrix such that AX-AY = X-Y forall X,Y € R"
Let e; denote the i-th standard basis vector for R”, and let A; denote the i-th column
of A, as above. Then

1 ifi=y

0 ifi#j

so that the columns of A are an orthonormal set, and A is an orthogonal matrix. il

AZTAJ = (Aei)TAej = Aei . Aej =€ €5 = {

We conclude this section by observing two useful properties of orthogonal matrices.
Proposition 2 Suppose that A and B are orthogonal matrices.

1. AB is an orthogonal matriz.

2. Either det(A) =1 or det(A) = —1.

The proof is left to the exercises.

Note: The converse is false. There exist matrices with determinant +1 that are not
orthogonal.

2. The n-Reflections Theorem
Recall that if u € R™ is a unit vector and W = u~ then
H=1-2uu’

is the reflection matrix for the subspace W. Since reflections preserve distances, it
follows from Theorem 1 that H must be an orthogonal matrix. (You can also verify
condition (1) directly.) We also showed earlier in the course that H = H~! = H' and
H?=1.

It turns out that every orthogonal matrix can be expressed as a product of reflection
matrices.



Theorem 3 (n-Reflections Theorem) Let A be an n x n orthogonal matriz. There
exist n X n reflection matrices Hy, Hs, ..., Hy such that A = HiHy--- Hy, where 0 <
k<n.

In other words, every n x n orthogonal matrix can be expressed as a product of at most
n reflections.

Proof: The theorem is trivial in dimension 1. Assume it holds in dimension n — 1.

For the n-dimensional case, let z = Ae,, and let H be a reflection of R™ that exchanges
z and e,. Then HAe, = Hz = e, so HA fixes e,,. Moreover, HA is also an orthogonal
matrix by Proposition 2, so HA preserves distances and angles. In particular, if we
view R"~! as the hyperplane e;-, then HA must map R"~! to itself. By the induction
assumption, H A must be expressible as a product of at most n — 1 reflections on R* 1,
which extend (along the e, direction) to reflections of R™ as well. In other words, either
HA=1Tor
HA = Hy--- Hy,

where £ < n. Setting H; = H, and keeping in mind that HH = I (since H is a
reflection!), we have

A=HHA=H Hy - Hy.

Proposition 4 If H is a reflection matriz, then det H = —1.
Proof: See Exercises.

Corollary 5 If A is an orthogonal matriz and A = H{Hs --- Hy, then det A = (—1)*.

So an orthogonal matrix A has determinant equal to +1 iff A is a product of an even
number of reflections.

3. Classifying 2 x 2 Orthogonal Matrices

Suppose that A is a 2 x 2 orthogonal matrix. We know from the first section that the
columns of A are unit vectors and that the two columns are perpendicular (orthonor-
mal!). Any unit vector u in the plane R? lies on the unit circle centered at the origin, and
so can be expressed in the form u = (cos#,sin @) for some angle . So we can describe
the first column of A as follows:
cosf 77
A= [ sinf 77 ]

What are the possibilities for the second column? Since the second column must be a
unit vector perpendicular to the first column, there remain only two choices:

cos) —sin6 cosf siné
A= [ sinf cos# ] ot A= [ sin @ —cos@]
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The first case is the rotation matriz, which rotates R? counterclockwise around the origin
by the angle §. The second case is a reflection across the line that makes an angle 6/2
from the z-axis (counterclockwise).

But which is which? You can check that the rotation matrix (on the left) has determinant
1, while the reflection matrix (on the right) has determinant -1. This is consistent with
Proposition 4 and Corollary 5, since a rotation of R? can always be expressed as a
product of two reflections (how?).

4. Classifying 3 x 3 Orthogonal Matrices

The n-Reflection Theorem 3 leads to a complete description of the 3x orthogonal matri-
ces. In particular, a 3 x 3 orthogonal matrix must a product of 0, 1, 2, or 3 reflections.

Theorem 6 Let A be a 3 x 3 orthogonal matriz.

1. If det A =1 then A is a rotation matriz.
2. If det A= —1 and AT = A, then either A= —1I or A is a reflection matriz.

3. Ifdet A = —1 and AT # A, then A is a product of 3 reflections (that is, A is a
non-trivial rotation followed by a reflection).

Proof: By Theorem 3, A is a product of 0, 1, 2, or 3 reflections. Note that if A =
Hy --- Hy, then det A = (—1)*.

If detA = 1 then A must be a product of an even number of reflections, either 0
reflections (so that A = I, the trivial rotation), or 2 reflections, so that A is a rotation.

If det A = —1 then A must be a product of an odd number of reflections, either 1 or 3.

If A is a single reflection then A = H for some Householder matrix H. In this case we
observed earlier that H” = H so AT = A.

Conversely, if det A = —1 and AT = A then det(—A) = 1 (since A is a 3 x 3 matrix)
and —AT = —A = —A~1 as well. Tt follows that —A is a rotation that squares to the
identity. If A # I, then the only time this happens is when we rotate by the angle 7
(that is, 180°) around some axis. But if —A is a 180° rotation around some axis, then
A = —(—A) must be the reflection across the equatorial plane for that axis (draw a
picture!). So A is a single reflection.

Finally if det A = —1 and AT # A, then A cannot be a rotation or a pure reflection, so
A must be a product of at least 3 reflections. §l

Corollary 7 Let A be a 3 x 3 orthogonal matriz.

1. If det A =1 then A is a rotation matriz.

2. If det A = —1 then —A is a rotation matriz.



Proof: If det A = 1 then A is a rotation matrix, by Theorem 6. If det A = —1 then
det(—A) = (—1)3det A = 1. Since —A is also orthogonal, —A must be a rotation. I

Corollary 8 Suppose that A and B are 3 x 3 rotation matrices. Then AB is also a
rotation matriz.

Proof: If A and B are 3 x 3 rotation matrices, then A and B are both orthogonal with
determinant +1. It follows that AB is orthogonal, and det AB =det Adet B=1-1=1.
Theorem 6 then implies that AB is also a rotation matrix.

Note that the rotations represented by A, B, and AB may each have completely different
angles and axes of rotation! Given two rotations A and B around two different axes of
rotation, it is far from obvious that AB will also be a rotation (around some mysterious
third axis). But this is true, by Corollary 8. Later on we will see how to compute
precisely the angle and axis of rotation of a rotation matrix.

Exercises:

1. (a) Suppose that A is an orthogonal matrix.
Prove that either det A =1 or det A = —1.

(b) Find a 2 x 2 matrix A such that det A = 1, but also such that A is not an orthogonal
matrix.

2. Suppose that A and B are orthogonal matrices. Prove that AB is an orthogonal
matrix.

3. Suppose that H = I —2uu” is a reflection matrix. Let vy,...,v,—1 be an orthonormal
basis for the subspace u'. (Here u' denotes the orthogonal complement to the line
spanned by u.)

(a) What is Hu =7
(b) What is Hv; = ?

(c) Let M be the matrix with columns as follows
M= v1| | Vp1|u

What is HM = 7 What are the columns of HM?
(d) By comparing det HM to det M prove that det H = —1.

4. (a) Give a geometric description (and sketch) of the reflection performed by the

matrix
cosf sinf
= lsin@ —cos@]



(b) Give a geometric description (and sketch) of the reflection performed by the matrix
1 0

(c) Show that a rotation in R? is a product of two reflections by showing that HyHs is
a rotation matrix. Give a geometric description (and sketch) of the rotation performed
by the matrix HiHo.

5. Let u,v,w be an orthonormal basis (of column vectors) for R3, and let A be the

matrix given by

A =uu + vo” + ww?.

(a) What is Au =? What is Av =? What is Aw =7
(b) Let P be the matrix

What is AP =7
(c) Prove that A = I (the identity!).

6. Give geometric descriptions of the what happens when you multiply a vector in R?
by each of the following orthogonal matrices:

cosf —sinf 0 cosf 0 —sinf 1 0 0
sinf cosf 0 0 1 0 0 cosf —sind
0 0 1 sinf@ 0 cos@ 0 sinf cos@

Sketch what happens in each case.



