
Lectures notes on orthogonal matrices (with exercises)
92.222 - Linear Algebra II - Spring 2004

by D. Klain

1. Orthogonal matrices and orthonormal sets

An n× n real-valued matrix A is said to be an orthogonal matrix if

AT A = I, (1)

or, equivalently, if AT = A−1.

If we view the matrix A as a family of column vectors:

A =


 A1 A2 · · · An




then

AT A =




AT
1

AT
2
...

AT
n





 A1 A2 · · · A3


 =




AT
1 A1 AT

1 A2 · · · AT
1 An

AT
2 A1 AT

2 A2 · · · AT
2 An

...
...

. . .
...

AT
nA1 AT

nA2 · · · AT
nAn




So the condition (1) asserts that A is an orthogonal matrix iff

AT
i Aj =

{
1 if i = j
0 if i 6= j

that is, iff the columns of A form an orthonormal set of vectors.

Orthogonal matrices are also characterized by the following theorem.

Theorem 1 Suppose that A is an n×n matrix. The following statements are equivalent:

1. A is an orthogonal matrix.

2. |AX| = |X| for all X ∈ Rn.

3. AX ·AY = X · Y for all X, Y ∈ Rn.

In other words, a matrix A is orthogonal iff A preserves distances and iff A preserves
dot products.

Proof: We will prove that 1 . ⇒ 2 . ⇒ 3 . ⇒ 1 .
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1 . ⇒ 2 . : Suppose that A is orthogonal, so that AT A = I. For all column vectors
X ∈ Rn, we have

|AX|2 = (AX)T AX = XT AT AX = XT IX = XT X = |X|2,
so that |AX| = |X|.
2 . ⇒ 3 . : Suppose that A is a square matrix such that |AX| = |X| for all X ∈ Rn.
Then, for all X, Y ∈ Rn, we have

|X + Y |2 = (X + Y )T (X + Y ) = XT X + 2XT Y + Y T Y = |X|2 + 2XT Y + |Y |2

and similarly,

|A(X +Y )|2 = |AX +AY |2 = (AX +AY )T (AX +AY ) = |AX|2 +2(AX)T AY + |AY |2.
Since |AX| = |X| and |AY | = |Y | and |A(X+Y )| = |X+Y |, it follows that (AX)T AY =
XT Y . In other words, AX ·AY = X · Y .

3 . ⇒ 1 . : Suppose that A is a square matrix such that AX ·AY = X ·Y for all X, Y ∈ Rn

Let ei denote the i-th standard basis vector for Rn, and let Ai denote the i-th column
of A, as above. Then

AT
i Aj = (Aei)T Aej = Aei ·Aej = ei · ej =

{
1 if i = j
0 if i 6= j

so that the columns of A are an orthonormal set, and A is an orthogonal matrix.

We conclude this section by observing two useful properties of orthogonal matrices.

Proposition 2 Suppose that A and B are orthogonal matrices.

1. AB is an orthogonal matrix.

2. Either det(A) = 1 or det(A) = −1.

The proof is left to the exercises.

Note: The converse is false. There exist matrices with determinant ±1 that are not
orthogonal.

2. The n-Reflections Theorem

Recall that if u ∈ Rn is a unit vector and W = u⊥ then

H = I − 2uuT

is the reflection matrix for the subspace W . Since reflections preserve distances, it
follows from Theorem 1 that H must be an orthogonal matrix. (You can also verify
condition (1) directly.) We also showed earlier in the course that H = H−1 = HT and
H2 = I.

It turns out that every orthogonal matrix can be expressed as a product of reflection
matrices.
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Theorem 3 (n-Reflections Theorem) Let A be an n × n orthogonal matrix. There
exist n × n reflection matrices H1,H2, . . . , Hk such that A = H1H2 · · ·Hk, where 0 ≤
k ≤ n.

In other words, every n×n orthogonal matrix can be expressed as a product of at most
n reflections.

Proof: The theorem is trivial in dimension 1. Assume it holds in dimension n− 1.

For the n-dimensional case, let z = Aen, and let H be a reflection of Rn that exchanges
z and en. Then HAen = Hz = en, so HA fixes en. Moreover, HA is also an orthogonal
matrix by Proposition 2, so HA preserves distances and angles. In particular, if we
view Rn−1 as the hyperplane e⊥n , then HA must map Rn−1 to itself. By the induction
assumption, HA must be expressible as a product of at most n− 1 reflections on Rn−1,
which extend (along the en direction) to reflections of Rn as well. In other words, either
HA = I or

HA = H2 · · ·Hk,

where k ≤ n. Setting H1 = H, and keeping in mind that HH = I (since H is a
reflection!), we have

A = HHA = H1H2 · · ·Hk.

Proposition 4 If H is a reflection matrix, then det H = −1.

Proof: See Exercises.

Corollary 5 If A is an orthogonal matrix and A = H1H2 · · ·Hk, then det A = (−1)k.

So an orthogonal matrix A has determinant equal to +1 iff A is a product of an even
number of reflections.

3. Classifying 2× 2 Orthogonal Matrices

Suppose that A is a 2 × 2 orthogonal matrix. We know from the first section that the
columns of A are unit vectors and that the two columns are perpendicular (orthonor-
mal!). Any unit vector u in the plane R2 lies on the unit circle centered at the origin, and
so can be expressed in the form u = (cos θ, sin θ) for some angle θ. So we can describe
the first column of A as follows:

A =

[
cos θ ??
sin θ ??

]

What are the possibilities for the second column? Since the second column must be a
unit vector perpendicular to the first column, there remain only two choices:

A =

[
cos θ − sin θ
sin θ cos θ

]
or A =

[
cos θ sin θ
sin θ − cos θ

]
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The first case is the rotation matrix, which rotates R2 counterclockwise around the origin
by the angle θ. The second case is a reflection across the line that makes an angle θ/2
from the x-axis (counterclockwise).

But which is which? You can check that the rotation matrix (on the left) has determinant
1, while the reflection matrix (on the right) has determinant -1. This is consistent with
Proposition 4 and Corollary 5, since a rotation of R2 can always be expressed as a
product of two reflections (how?).

4. Classifying 3× 3 Orthogonal Matrices

The n-Reflection Theorem 3 leads to a complete description of the 3× orthogonal matri-
ces. In particular, a 3× 3 orthogonal matrix must a product of 0, 1, 2, or 3 reflections.

Theorem 6 Let A be a 3× 3 orthogonal matrix.

1. If detA = 1 then A is a rotation matrix.

2. If detA = −1 and AT = A, then either A = −I or A is a reflection matrix.

3. If detA = −1 and AT 6= A, then A is a product of 3 reflections (that is, A is a
non-trivial rotation followed by a reflection).

Proof: By Theorem 3, A is a product of 0, 1, 2, or 3 reflections. Note that if A =
H1 · · ·Hk, then detA = (−1)k.

If detA = 1 then A must be a product of an even number of reflections, either 0
reflections (so that A = I, the trivial rotation), or 2 reflections, so that A is a rotation.

If detA = −1 then A must be a product of an odd number of reflections, either 1 or 3.

If A is a single reflection then A = H for some Householder matrix H. In this case we
observed earlier that HT = H so AT = A.

Conversely, if detA = −1 and AT = A then det(−A) = 1 (since A is a 3 × 3 matrix)
and −AT = −A = −A−1 as well. It follows that −A is a rotation that squares to the
identity. If A 6= I, then the only time this happens is when we rotate by the angle π
(that is, 180o) around some axis. But if −A is a 180o rotation around some axis, then
A = −(−A) must be the reflection across the equatorial plane for that axis (draw a
picture!). So A is a single reflection.

Finally if detA = −1 and AT 6= A, then A cannot be a rotation or a pure reflection, so
A must be a product of at least 3 reflections.

Corollary 7 Let A be a 3× 3 orthogonal matrix.

1. If detA = 1 then A is a rotation matrix.

2. If detA = −1 then −A is a rotation matrix.
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Proof: If detA = 1 then A is a rotation matrix, by Theorem 6. If detA = −1 then
det(−A) = (−1)3 det A = 1. Since −A is also orthogonal, −A must be a rotation.

Corollary 8 Suppose that A and B are 3 × 3 rotation matrices. Then AB is also a
rotation matrix.

Proof: If A and B are 3× 3 rotation matrices, then A and B are both orthogonal with
determinant +1. It follows that AB is orthogonal, and detAB = det Adet B = 1 ·1 = 1.
Theorem 6 then implies that AB is also a rotation matrix.

Note that the rotations represented by A, B, and AB may each have completely different
angles and axes of rotation! Given two rotations A and B around two different axes of
rotation, it is far from obvious that AB will also be a rotation (around some mysterious
third axis). But this is true, by Corollary 8. Later on we will see how to compute
precisely the angle and axis of rotation of a rotation matrix.

Exercises:

1. (a) Suppose that A is an orthogonal matrix.
Prove that either detA = 1 or detA = −1.

(b) Find a 2×2 matrix A such that detA = 1, but also such that A is not an orthogonal
matrix.

2. Suppose that A and B are orthogonal matrices. Prove that AB is an orthogonal
matrix.

3. Suppose that H = I−2uuT is a reflection matrix. Let v1, . . . , vn−1 be an orthonormal
basis for the subspace u⊥. (Here u⊥ denotes the orthogonal complement to the line
spanned by u.)

(a) What is Hu = ?

(b) What is Hvi = ?

(c) Let M be the matrix with columns as follows

M =


 v1 · · · vn−1 u




What is HM = ? What are the columns of HM?

(d) By comparing detHM to detM prove that detH = −1.

4. (a) Give a geometric description (and sketch) of the reflection performed by the
matrix

H1 =

[
cos θ sin θ
sin θ − cos θ

]

5



(b) Give a geometric description (and sketch) of the reflection performed by the matrix

H2 =

[
1 0
0 −1

]

(c) Show that a rotation in R2 is a product of two reflections by showing that H1H2 is
a rotation matrix. Give a geometric description (and sketch) of the rotation performed
by the matrix H1H2.

5. Let u, v, w be an orthonormal basis (of column vectors) for R3, and let A be the
matrix given by

A = uuT + vvT + wwT .

(a) What is Au =? What is Av =? What is Aw =?

(b) Let P be the matrix

P =


 u v w




What is AP =?

(c) Prove that A = I (the identity!).

6. Give geometric descriptions of the what happens when you multiply a vector in R3

by each of the following orthogonal matrices:



cos θ − sin θ 0
sin θ cos θ 0

0 0 1







cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ







1 0 0
0 cos θ − sin θ
0 sin θ cos θ




Sketch what happens in each case.
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