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These supplementary notes summarize the presentation on primitive roots given
in class, which differed slightly from the approach in the textbook.

§

Denote by Un the group of units mod n.

The order of a unit u ∈ Un is the smallest positive integer k such that uk ≡ 1
mod n. This value is denoted ordn(u).

For example, if we compute the powers of 2 mod 7 we have

21 ≡ 2, 22 ≡ 4, 23 ≡ 1 mod 7,

so that ord7(2) = 3.

Proposition 1. If α = ordn(u), then um ≡ 1 mod n if and only if α|m.

Proof. If α|m then m = αk for some integer k, so that

um ≡ uαk ≡ (uα)k ≡ 1k ≡ 1 mod n.

To prove the converse, suppose that um ≡ 1. Write m = αq + r, where 0 ≤ r < α.
Since uα ≡ 1, we have

1 ≡ um ≡ uαq+r ≡ (uα)qur ≡ ur mod n.

Since r < α, this violates the minimality of the order α, unless r = 0. q

By Euler’s Theorem, uφ(n) ≡ 1 mod n for every u ∈ Un. It follows from the
previous proposition that

ordn(u)|φ(n)
for all u ∈ Un.

In the discussion that follows we will often focus the order properties of units
modulo a prime p. In this case we know that ordp(u)|(p− 1) for all units u ∈ Up.

§

If we take the powers of 2 mod 5 we have

21 ≡ 2 22 ≡ 4 23 ≡ 3 24 ≡ 1 mod 5
1
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exhausting the units mod 5, so that ord5(2) = 4. In other words, 2 generates the
entire multiplicative group U5, which turns out to be a cyclic group. A similar
computation reveals that 3 generates the group U7; that is ord7(3) = 6 = φ(7).

We say that r is a primitive root mod n if

Un = {1, r, r2, . . . , rφ(n)−1}.
In other words, r is a primitive root for n iff ordn(r) = φ(n). In this case, the
group Un is cyclic, with r as a generator.

Exercise: Show that there is no primitive root mod 8.

Some moduli have primitive roots, and some do not. We will show (eventually)
that every prime modulus p has at least one primitive root.

§

It is not always easy to find a primitive root, when they exist at all. However,
once we have found a primitive root r mod n, it is easy to find the others.

Proposition 2. If u ∈ Un has order α, then uk is has order α if and only if gcd(k, α) = 1.

Proof. Let d = gcd(k, α), and let β = ordn(uk). We need to show that β = α if and
only if d = 1.

If d > 1 then k = dx and α = dy, where x, y ∈ Z, and where 1 ≤ y < α. In this
case,

(uk)y ≡ uky ≡ udxy ≡ uαx ≡ (uα)x ≡ 1x ≡ 1 mod p.
The minimality of the order β now implies that β ≤ y < α.

Suppose instead that d = 1. Since β = ordn(uk), we have

ukβ = (uk)β = 1.

It follows from Proposition 1 that α|kβ. Since d = 1, the values α and k are
co-prime, so that α|β.

Meanwhile,
(uk)α ≡ (uα)k ≡ 1k ≡ 1 mod p,

so that β|α, again by Proposition 1. It now follows that β = α. q

Corollary 1. If Zn has a primitive root r, then the primitive roots for Zn are precisely
those units rk where gcd(k, φ(n)) = 1. In particular, there are φ(φ(n)) primitive roots
mod n.

Proof. If r is a primitive root mod n, then ordn(r) = φ(n). The previous propo-
sition then implies that ordn(rk) = φ(n) iff k is relatively prime to φ(n), giving
φ(φ(n)) distinct cases. Since every u ∈ Un has the form rk for some k (because r
is primitive), this exhausts all possibilities for primitive roots mod n. q
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Assuming that there is at least one primitive root modulo a prime p (to be shown
below), it follows there are exactly φ(p− 1) = φ(φ(p)) primitive roots for p.

§

The following lemma is useful for generating elements of higher order, given
elements of smaller order.

Lemma 1 (Multiplicative Lemma). Suppose that ordn(α) = a and ordn(β) = b. If
gcd(a, b) = 1, then ordn(αβ) = ab.

Proof. Let c = ordn(αβ). Evidently

(αβ)ab = αabβab = (αa)b(βb)a = 1b1a = 1,

so that c|ab, by Proposition 1. Meanwhile,

1 = 1a = ((αβ)c)a = (αβ)ac = αacβac = βac,

so that b|ac, again by Proposition 1. Since gcd(a, b) = 1, it follows that b|c. By a
similar and symmetrical argument, we also have a|c. Again, since gcd(a, b) = 1,
we have ab|c. It now follows that c = ab. q

This lemma can be useful for finding primitive roots. For example, it is easy to
see that 2 has order 5 mod 31, since 25 ≡ 32 ≡ 1 mod 31. And we always know
that −1 has order 2 modulo an odd prime. If we can find and element c of order
3, the Multiplicative Lemma implies that −2c will have order 30, so it is primitive.
Looking at a list of cubes:

1, 8, 27, 64, 125, 216, 343, ...

we see that 53 = 125 ≡ 1 mod 31, so that −10 ≡ 21 is a primitive root. The com-
plete list of primitive roots mod 31 will be congruent to some 21k for k relatively
prime to 30, that is, the values:

21, 217, 2111, 2113, 2117, 2119, 2123, 2129 mod 31

or (listed in the same order):

21, 11, 12, 22, 24, 13, 17, 3 mod 31

§

We now present a series of lemmas leading to a proof that, if p is prime, then Zp
has a primitive root.

It is a consequence of Fermat’s Theorem that the polynomial

xp−1 − 1

has at least p − 1 roots mod p. By Lagrange’s Theorem this polynomial has at
most p− 1 roots, so it therefore has exactly the p− 1 roots 1, 2, . . . , p− 1.
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A similar argument yields the following.

Lemma 2. If xp−1 − 1 = g(x)h(x), where deg(g) = k and deg(h) = l, then g(x) has
exactly k roots, and h(x) has exactly l roots mod p.

Proof. Note that k + l = p− 1, since degrees (leading exponents) are added when
polynomials are multiplied.

If r is a root of xp−1 − 1, then g(r)h(r) ≡ 0 mod p, so that either g(r) ≡ 0 or
h(r) ≡ 0 mod p. If g has fewer than k roots, then there are more than l = p− 1− k
distinct roots of xp−1 − 1 remaining, all of which must then be roots of h. But
h cannot have more than l roots. Therefore g must have exactly k roots, and
similarly h must have exactly p− 1− k = l roots. q

The following algebraic identity is a variant of the geometric sum formula.

Lemma 3. If n = kl, then

xn − 1 = (xk)l − 1 = (xk − 1)(xk(l−1) + xk(l−2) + · · ·+ xk + 1).

Proof. Begin with the geometric sum identity:

ul − 1 = (u− 1)(ul−1 + ul−2 + · · ·+ u + 1).

The lemma follows after substituting u = xk. q

We are now ready to prove the main theorem.

Theorem 1. If p is prime, then Zp has a primitive root.

Proof. Suppose p− 1 has the prime power factorization

p− 1 = qa1
1 · · · q

ak
k ,

where q1 < · · · < qk.

By Lemma 3, we have

xp−1 − 1 = (xqa1
1 − 1)h(x),

where h(x) is a polynomial. By Lemma 2 the factor xqa1
1 − 1 has exactly qa1

1 roots
mod p.

If s is a root of xqa1
1 − 1, then sqa1

1 ≡ 1 mod p. It follows from Proposition 1 that
ordp(s)|qa1

1 . Therefore, ordp(s) = qb1
1 , for some 0 ≤ b1 ≤ a1.

If every root of xqa1
1 − 1 has order strictly less than qa1

1 , then every root of xqa1
1 − 1

is also a root of of xqa1−1
1 − 1. In other words, this polynomial of degree qa1−1

1
would have qa1

1 roots, which is impossible. It follows that at least one of the roots
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of xqa1
1 − 1 has order qa1

1 . In other words, there exists an element r1 ∈ Up having
order qa1

1 .

Repeating this argument for each qi, we find, for each i, an element ri ∈ Up of
order qai

i .

By the Multiplicative Lemma, the unit r = r1 · · · rk has order qa1
1 · · · q

ak
k = p− 1,

so that r is a primitive root mod p. q

§

Exercise:

Suppose that φ(p) = p− 1 = qa1
1 · · · q

as
s , where q1 < · · · < qs are

prime, and each ai > 0. Prove that r is a primitive root mod p iff

r
p−1
qi 6≡ 1 mod p

for every qi.

This result in this exercise speeds the process of checking whether a value r is
primitive. For example, if p = 31 then p− 1 = 30 = 2 · 3 · 5. To determine if 3 is
primitive mod 31 we need only check that

36 6≡ 1, 310 6≡ 1, 315 6≡ 1, mod 31.

First, use repeated squaring to determine that

32 ≡ 9, 34 ≡ −12, 38 ≡ 20, 316 ≡ −3 mod 31.

It is then easy to compute

36 ≡ 16, 310 ≡ 25, 315 ≡ −1 mod 31

so that 3 must be primitive mod 31.

§

We have shown that if p is prime then Zp has a primitive root.

More generally, it can be shown that primitive roots exist for Zn if and only if
n = 1, 2, 4, pe or 2pe, where p is an odd prime, and e is a positive integer.

Moreover, it is a consequence of Euler’s theorem and the Chinese Remainder
Theorem that Zn has no primitive roots if n is divisible by two distinct odd
primes.

Since Z8 has no primitive roots (by inspection), it follows from an induction
argument (with respect to the exponent e) that Z2e has no primitive roots for
e ≥ 3.
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To prove that Zp2 has a primitive root, find a primitive root r for Zp. One can
show that either r or r + p is primitive for Zp2 .

To prove that Zpe has a primitive root for e > 2, find a primitive root r for Zp2 .
One can show that r is also primitive for Zpe , using induction on e.

To prove that Z2pe has a primitive root for e > 2, find a primitive root r for Zpe .
Either r or r + pe is odd. The odd choice is also primitive for Z2pe .

Details are given in the textbook (Jones & Jones).

§ § § §


