1. How to compute the orthogonal matrix that represents a rotation of \mathbb{R}^3

Recall that the 2×2 matrix

$$A_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

rotates the plane \mathbb{R}^2 counter-clockwise by the angle θ around the origin. Is there a similar way to represent rotations of 3-dimensional space using 3×3 matrices?

Consider the simple case of rotating 3-dimensional space by the same angle θ counter-clockwise around the z-axis. This is analogous to rotating the earth by the angle θ around the north pole, for example. This rotation fixes the z-axis, and acts on the xy-plane in the exactly the same way as the 2×2 matrix A_θ above. Therefore, the matrix of rotation around the z-axis by the counter-clockwise angle θ is given by

$$S_\theta = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

where we assign the column vector $(1, 0, 0)^T$ to the x-axis, $(0, 1, 0)^T$ to the y-axis, and $(0, 0, 1)^T$ to the z-axis.

Note that, like A_θ, the matrix S_θ is an orthogonal matrix, that is,

$$S_\theta S_\theta^T = I \quad \text{or, equivalently,} \quad S_\theta^T = S_\theta^{-1}.$$

More generally, suppose we rotate 3-dimensional space counter-clockwise by the angle θ around a different axis through the origin, pointing along the direction of some unit vector $u \in \mathbb{R}^3$. For this we need the analogue of the matrix S_θ, for which the z-axis is replaced by a different axis of rotation, the line passing through the point u and the origin o. Let us call this new rotation matrix $R_{\theta,u}$, depending as it does on both the choice of axis u and the angle of rotation θ.

To compute $R_{\theta,u}$, choose a unit vector v that is orthogonal to u; that is, so that $u \cdot v = 0$. Let $w = u \times v$, where \times denotes the vector cross product in \mathbb{R}^3. We now have a new orthonormal basis for \mathbb{R}^3, $\{v, w, u\}$ such that $v \times w = u$. (It might help the reader to sketch this basis, where u is the vector pointing upwards in your picture, in analogy to the z-axis.)

Let P denote the matrix having v, w, u as its three columns (in that exact order):

$$P = \begin{bmatrix} v & w & u \end{bmatrix}, \quad (1)$$
Note that P is an orthogonal matrix, $P^T P = I$, since the columns of P were (deliberately) chosen to form an orthonormal set. Note in particular that
\[
P^T u = \begin{bmatrix} v^T \\ w^T \\ u^T \end{bmatrix} u = \begin{bmatrix} v^T u \\ w^T u \\ u^T u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},
\]
and that, similarly,
\[
P^T v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad P^T w = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.
\]

Theorem 1 The matrix $R_{\theta, u}$ that rotates \mathbb{R}^3 around the vector u by the counterclockwise angle θ is given by the formula
\[
R_{\theta, u} = PS_{\theta} P^T
\]

Proof of Theorem 1: To begin, consider what the transformation $PS_{\theta} P^T$ does to the vectors v, w, u. The matrix $PS_{\theta} P^T$ fixes u; indeed, by (1) and (2),
\[
PS_{\theta} P^T u = PS_{\theta} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = P \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = u.
\]
Similarly,
\[
PS_{\theta} P^T v = PS_{\theta} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = P \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix} = \cos \theta v + \sin \theta w,
\]
while
\[
PS_{\theta} P^T w = PS_{\theta} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = P \begin{bmatrix} -\sin \theta \\ \cos \theta \\ 0 \end{bmatrix} = -\sin \theta v + \cos \theta w.
\]
More generally, if $X = av + bw + cu$ is any vector in \mathbb{R}^3 (expressed in terms of the orthonormal basis $\{v, w, u\}$) then
\[
PS_{\theta} P^T X = aPS_{\theta} P^T v + bPS_{\theta} P^T w + cPS_{\theta} P^T u
\]
\[
= a(\cos \theta v + \sin \theta w) + b(-\sin \theta v + \cos \theta w) + cu = R_{\theta, u} X,
\]
rotating X counterclockwise by θ in the vw-plane orthogonal to the axis of rotation u.

The identity (3), together with the orthogonality of P and S_{θ}, implies that $R_{\theta, u}$ is also an orthogonal matrix. More precisely, we have the following corollary.

Corollary 2 A rotation matrix R is an orthogonal matrix with determinant 1.
Proof: If R is a rotation matrix then $R = P S_\theta P^T$, where $P^T = P^{-1}$ and $S_\theta^T = S_\theta^{-1}$, as in Theorem 1. Therefore,

$$R^T R = (P S_\theta P^T)^T P S_\theta P^T = P S_\theta^T P^T P S_\theta P^T = P S_\theta^T S_\theta P^T = PP^T = I,$$

so that R is an orthogonal matrix. Moreover,

$$\det(R) = \det(P S_\theta P^T) = \det(P S_\theta P^{-1}) = \det(P) \det(S_\theta) \frac{1}{\det(P)} = \det(S_\theta) = 1.$$

\[\square\]

Remark: The converse of the Corollary is also true: A matrix R is a rotation matrix if and only if R is an orthogonal matrix and $\det(R) = 1$. But we will not prove this now.

Example: Find the matrix $R_{\pi/3, \mathbf{u}}$ that rotates \mathbb{R}^3 by the counterclockwise angle $\pi/3$ around the axis through the vector $\mathbf{u} = (2, 1, 1)$.

Solution: To begin, find a vector \mathbf{v} that is perpendicular to $\mathbf{u} = (2, 1, 1)$. An easy choice is $\mathbf{v} = (0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$. We then set $\mathbf{w} = \mathbf{u} \times \mathbf{v}$, so that

$$\mathbf{w} = \det\begin{bmatrix} i & j & k \\ 2 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} = (-2, 2, 2).$$

We now have an orthogonal set $\{\mathbf{v}, \mathbf{w}, \mathbf{u}\}$, where $\mathbf{v} \times \mathbf{w} = \mathbf{u}$ and \mathbf{u} is parallel to our desired axis of rotation. Unfortunately, however, the vectors $\mathbf{v}, \mathbf{w}, \mathbf{u}$ are not unit vectors. This is easily fixed: dividing each vector by its length, re-assign the variables $\mathbf{v}, \mathbf{w}, \mathbf{u}$ to form the orthonormal set:

$$\mathbf{v} = (0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \quad \mathbf{w} = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \quad \mathbf{u} = (\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}),$$

so that

$$P = \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}.$$

It now follows from Theorem 1 that

$$R_{\pi/3, \mathbf{u}} = PS_{\pi/3} P^T = \begin{bmatrix} 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\sqrt{3}/2 & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}.$$

After multiplying these matrices, we obtain

$$R_{\pi/3, \mathbf{u}} = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} - \frac{1}{2\sqrt{2}} & \frac{1}{6} + \frac{1}{2\sqrt{2}} \\ \frac{1}{6} + \frac{1}{2\sqrt{2}} & \frac{7}{12} & \frac{1}{12} - \frac{1}{\sqrt{2}} \\ \frac{1}{6} - \frac{1}{2\sqrt{2}} & \frac{1}{12} + \frac{1}{\sqrt{2}} & \frac{7}{12} \end{bmatrix}.$$

(4)
2. How to compute the rotation of \mathbb{R}^3 represented by a given orthogonal matrix

Now suppose you are given an orthogonal matrix R such that $\det R = 1$; in other words, a rotation matrix. What is the axis of rotation for R? What is the angle of rotation? How do we compute u and θ so that $R = R_{\theta,u}$?

Here is one quick test to find θ. Recall that the trace of a square $n \times n$ matrix A is the sum of its diagonal entries: $\text{trace}(A) = A_{11} + A_{22} + \cdots + A_{nn}$.

Theorem 3 (The Cosine Test) If R is a rotation matrix having angle of rotation θ, then

$$\cos \theta = \frac{\text{trace}(R) - 1}{2}. \quad (5)$$

Proof: We will need the fact that if A is any square $n \times n$ matrix, and P is an $n \times n$ invertible matrix, then $\text{trace}(PAP^{-1}) = \text{trace}(A)$. This is a consequence of the fact that, for any two $n \times n$ matrices A and B, we have $\text{trace}(AB) = \text{trace}(BA)$. (You can check this directly by using the matrix multiplication formula.)

If R is a rotation matrix having angle of rotation θ, then $R = R_{\theta,u}$ for some unit vector u, so that $R = PS_{\theta}P^T = PS_{\theta}P^{-1}$, as in (3). Hence,

$$\text{trace}(R) = \text{trace}(PS_{\theta}P^{-1}) = \text{trace}(S_{\theta}) = 1 + 2 \cos \theta,$$

from which the formula (5) above immediately follows. \[\blacksquare\]

The Cosine Test, while very easy to use, doesn’t tell the whole story, since the axis of rotation u remains unknown. Moreover, there remains an ambiguity regarding the value of θ, since we only know $\cos \theta$. Since $\cos \theta = \cos(-\theta)$, the sign of the angle remains obscure.

Fortunately it takes only a tiny bit of work to compute u. The key is to remember that if u lies in the axis of rotation, then the rotation R fixes the vector u. In other words, $Ru = u$. Since the inverse matrix R^{-1} will represent rotation around the same axis u by the negative of the angle θ, we also have $R^{-1}u = u$. Recall that R is an orthogonal matrix, so that $R^T = R^{-1}$. It now follows that $R^T u = R^{-1} u = u$, so that

$$(R - R^T)u = Ru - R^T u = u - u = 0.$$

This suggests that we can discover the vector u by considering the null space of the matrix $R - R^T$.

Denote

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
We then have

\[
R - R^T = \begin{bmatrix}
0 & r_{12} - r_{21} & r_{13} - r_{31} \\
r_{21} - r_{12} & 0 & r_{23} - r_{32} \\
r_{31} - r_{13} & r_{32} - r_{23} & 0
\end{bmatrix} = \begin{bmatrix}
0 & \alpha & \beta \\
-\alpha & 0 & \gamma \\
-\beta & -\gamma & 0
\end{bmatrix},
\]

where we denote \(\alpha = r_{12} - r_{21} \), \(\beta = r_{13} - r_{31} \), and \(\gamma = r_{23} - r_{32} \). This suggests that \(u \) is parallel to the vector

\[
q = \begin{bmatrix}
-\gamma \\
\beta \\
-\alpha
\end{bmatrix} = \begin{bmatrix}
r_{32} - r_{23} \\
r_{13} - r_{31} \\
r_{21} - r_{12}
\end{bmatrix}, \tag{6}
\]

assuming this vector is not the zero vector (which might happen sometimes).

We summarize this result, and make it more precise, with the following theorem.

Theorem 4 (The Symmetric Difference Test) Suppose that \(R \) is a rotation matrix, and suppose that \(R^T \neq R \), so that the vector \(q \neq 0 \). Then the axis of rotation of \(R \) is parallel to \(q \). More specifically, the matrix \(R \) rotates \(\mathbb{R}^3 \) by a positive counterclockwise angle \(\theta \) around the unit vector \(u \), where

\[
q = 2(\sin \theta) u.
\]

Note, in particular, that \(2 \sin \theta = |q| \) and \(u = \frac{q}{|q|} \). Using both Theorem 3 and Theorem 4 we obtain the axis of rotation, with direction and orientation provided by \(u \), and the exact value of the angle \(\theta \), from the values of \(\cos \theta \) and \(\sin \theta \).

Proof: Suppose that \(R = R_{\theta,u} = PS_\theta P^T \) as in (3). Then

\[
\begin{bmatrix}
0 & \alpha & \beta \\
-\alpha & 0 & \gamma \\
-\beta & -\gamma & 0
\end{bmatrix} = R - R^T = PS_\theta P^T - PS_\theta^T P^T = P(S_\theta - S_\theta^T) P^T = P \begin{bmatrix}
0 & -2\sin \theta & 0 \\
2\sin \theta & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} P^T
\]

\[
= \begin{bmatrix}
v & w & u
\end{bmatrix} \begin{bmatrix}
0 & -2\sin \theta & 0 \\
2\sin \theta & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
v^T \\
w^T \\
u^T
\end{bmatrix} = 2(\sin \theta)(wv^T - vw^T),
\]

so that

\[
\alpha = 2 \sin \theta(v_2w_1 - v_1w_2), \quad \beta = 2 \sin \theta(v_3w_1 - v_1w_3), \quad \gamma = 2 \sin \theta(v_3w_2 - v_2w_3).
\]

In other words,

\[
q = \begin{bmatrix}
-\gamma \\
\beta \\
-\alpha
\end{bmatrix} = 2(\sin \theta) v \times w = 2(\sin \theta) u.
\]

\[\square\]
Example: Let’s use Theorem 4 to check the work we did in the last example, where

\[
R = \begin{bmatrix}
\frac{5}{6} & \frac{1}{6} - \frac{1}{2\sqrt{2}} & \frac{1}{6} + \frac{1}{2\sqrt{2}} \\
\frac{1}{6} + \frac{1}{2\sqrt{2}} & \frac{7}{12} & \frac{1}{12} - \frac{1}{\sqrt{2}} \\
\frac{1}{6} - \frac{1}{2\sqrt{2}} & \frac{1}{12} + \frac{1}{\sqrt{2}} & \frac{7}{12}
\end{bmatrix}.
\]

In this case, we use (6) to compute

\[
q = \begin{bmatrix}
\frac{2}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{bmatrix},
\]

so that \(2\sin \theta = |q| = \sqrt{3}\). This implies that \(\theta = \arcsin(\frac{\sqrt{3}}{2}) = \frac{\pi}{3}\), and that \(u\) is parallel to \((2, 1, 1)\), as we began with in the previous example.

We can double-check the angle calculation with the Cosine Test. In this case, we have

\[
\cos \theta = \frac{\text{trace}(R) - 1}{2} = \frac{1}{2} (\frac{5}{6} + \frac{7}{12} + \frac{7}{12} - 1) = \frac{1}{2},
\]

so that \(\theta = \arccos(\frac{1}{2}) = \frac{\pi}{3}\) once again.

Question: Theorem 4 assumes that \(R \neq R^T\). What if \(R = R^T\)? In this case we get \(R - R^T = 0\), the zero matrix, so that \(q = 0\), the zero vector. From this we can deduce that \(\sin \theta = 0\), so that either \(\theta = 0\) or \(\theta = \pi\). If \(\theta = 0\), then \(R\) is the identity rotation, and this would be obvious immediately, since \(R\) would be the identity matrix! So if \(R \neq I\) we know that \(\theta = \pi\). But what is the axis of rotation? Since \(\theta = \pi\) in this instance, we have

\[
R = PS_\pi P^T = P \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix} P^T = -vv^T - ww^T + uu^T.
\]

Since \(v, w, u\) form an orthonormal basis, \(vv^T + ww^T + uu^T = I\), the identity matrix (Why?), so that

\[
R = -vv^T - ww^T - uu^T + 2uu^T = -I + 2uu^T,
\]

and \(2uu^T = I + R\). But the columns of the matrix \(uu^T\) are each parallel to \(u\) (Why?), so the vector \(u\) can be obtained by taking any non-zero column of \(I + R\) and normalizing to a unit vector.
3. Summary

To compute $R_{\theta,u}$ from a unit vector u and an angle θ:

(1) Choose any unit vector v such that $v \perp u$.

(2) Set $w = u \times v$ and set $P = \begin{bmatrix} v & w & u \end{bmatrix}$.

(3) The matrix $R_{\theta,u}$ is given by

$$R_{\theta,u} = P S_\theta P^T = \begin{bmatrix} v & w & u \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v^T \\ w^T \\ u^T \end{bmatrix}.$$

To compute u and θ from a rotation matrix R:

(1) If $R \neq R^T$, then set $q = \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$.

In this case $R = R_{\theta,u}$ where $u = q/|q|$ and $\sin \theta = |q|/2$, and $\cos \theta = \frac{\text{trace}(R) - 1}{2}$.

(2) If $R = R^T$ and $R \neq I$ then $R = R_{u,\pi}$ where u is a unit vector parallel to any non-zero column of $I + R$.

(3) If $R = I$ then R is the identity rotation (angle zero, everything stays fixed).
Exercises:

1. Compute the matrix $R_{\frac{\pi}{4}, (1, 1, 1)}$.

2. Compute the matrix $R_{\frac{\pi}{6}, (0, 1, 0)}$.

3. Compute the matrix $R_{\pi, (2, 0, 1)}$.

4. Compute the matrix $R_{2\pi, (2, 0, 1)}$.

5. Compute the angle θ and axis of rotation \mathbf{u} for the rotation matrix

\[
R = \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\
0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}}
\end{bmatrix}.
\]

6. Compute the angle θ and axis of rotation \mathbf{u} for the rotation matrix

\[
R = \begin{bmatrix}
\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{6}} & \frac{2}{\sqrt{30}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} \\
0 & \frac{1}{\sqrt{6}} & \frac{5}{\sqrt{30}}
\end{bmatrix}.
\]

7. Compute the angle θ and axis of rotation \mathbf{u} for the rotation matrix

\[
R = \begin{bmatrix}
-\frac{2}{3} & -\frac{3}{3} & -\frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{2}{3}
\end{bmatrix}.
\]

8. Suppose that $R = R_{\theta, \mathbf{u}}$. Prove that $R^{-1} = R_{-\theta, \mathbf{u}}$.

9. Suppose that $R = R_{\theta, \mathbf{u}}$. Prove that $R^{T} = R_{-\theta, \mathbf{u}}$.

10. Suppose that $R = R_{\theta, \mathbf{u}}$. Prove that $R^{2} = R_{2\theta, \mathbf{u}}$.

11. Prove that $R_{-\theta, \mathbf{u}} = R_{\theta, -\mathbf{u}}$.

12. Suppose that $R = R_{\pi, \mathbf{u}}$. Prove that $(I + R)\mathbf{v} = 0$ and that $(I + R)\mathbf{w} = 0$.
Selected Solutions:

1. $R_{\pi,(1,1,1)} = \begin{bmatrix}
\frac{1}{3} + \frac{2}{3\sqrt{2}} & \frac{1}{3} - \frac{1}{\sqrt{6}} & \frac{1}{3} + \frac{1}{\sqrt{6}} \\
\frac{1}{3} - \frac{1}{\sqrt{6}} & \frac{1}{3} + \frac{2}{3\sqrt{2}} & \frac{1}{3} - \frac{1}{\sqrt{6}} \\
\frac{1}{3} + \frac{2}{3\sqrt{2}} & \frac{1}{3} - \frac{1}{\sqrt{6}} & \frac{1}{3} + \frac{2}{3\sqrt{2}}
\end{bmatrix}$.

2. $R_{\pi,(0,1,0)} = \begin{bmatrix}
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}
\end{bmatrix}$.

3. $R_{\pi,(2,0,1)} = \begin{bmatrix}
0 & 1 & 0 \\
\frac{4}{5} & 0 & -\frac{3}{5}
\end{bmatrix}$.

4. $R_{2\pi,(2,0,1)} = I = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$.

5. $q = \begin{bmatrix}
-\sqrt{2} \\
\frac{\sqrt{3} - 1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}}
\end{bmatrix}$, and $R = R_{u,\theta}$, where $u = \frac{q}{|q|} \approx \begin{bmatrix}
-0.743 \\
-0.594 \\
-0.308
\end{bmatrix}$

and $\theta = \arcsin\left(\frac{|q|}{2}\right) = \arccos\left(\text{trace}(R) - 1\right) \approx 1.217$ radians.

6. $q = \begin{bmatrix}
\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{30}} \\
\frac{2}{\sqrt{30}} - \frac{2}{\sqrt{6}} \\
\frac{\sqrt{2}}{\sqrt{5}} - \frac{1}{\sqrt{15}}
\end{bmatrix}$, and $R = R_{u,\theta}$, where $u = \frac{q}{|q|} \approx \begin{bmatrix}
0.845 \\
0.522 \\
0.111
\end{bmatrix}$

and $\theta = \arcsin\left(\frac{|q|}{2}\right) = \arccos\left(\text{trace}(R) - 1\right) \approx 2.785$ radians.

7. Since $R^T = R$ and $R \neq I$, it follows that $\theta = \pi$. We then compute

$$I + R = \begin{bmatrix}
\frac{1}{3} & -\frac{2}{3} & -\frac{1}{3} \\
-\frac{2}{3} & \frac{4}{3} & \frac{2}{3} \\
-\frac{1}{3} & \frac{2}{3} & \frac{1}{3}
\end{bmatrix},$$

so that $u = \begin{bmatrix}
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{bmatrix}$ and $R = R_{\pi,(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}})}$.
