To help you with some of these exercises I have posted some extra online notes on volume and determinants that elaborate some of the ideas discussed in lecture. Those notes can be found at: faculty.uml.edu/dklain/volume-formula.pdf

1. Find the area V_{2} of the parallelogram in \mathbb{R}^{2} having vertices at the four points:

$$
(2,1) \quad(4,5) \quad(7,3) \quad(5,-1)
$$

2. Find the area V_{2} of the parallelogram in \mathbb{R}^{5} having vertices at the four points:

$$
(2,1,1,1,1) \quad(4,5,0,1,2) \quad(7,3,0,4,2) \quad(5,-1,1,4,1)
$$

3. Let τ_{n} denote the n-volume of the unit equilateral n-simplex T_{n}. For example, $\tau_{2}=\frac{\sqrt{3}}{4}$, the area of a unit equilateral triangle, while τ_{3} is the volume of the tetrahedron having all unit length edges.
The following steps lead to a formula for τ_{n}.
Let $e_{1}=(1,0,0 \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n+1}=(0,0,0, \ldots, 1)$, denote the standard coordinate unit vectors in \mathbb{R}^{n+1}. The convex hull S of these points is an equilateral n-simplex lying inside the plane $x_{1}+\cdots+x_{n+1}=1$ of \mathbb{R}^{n+1}. Note, however, that it is not the unit equilateral simplex, since each edge of S has length $\sqrt{2}$.
(a) Show that the $(n+1)$-dimensional volume of the $(n+1)$-dimensional simplex S^{\prime} having vertices at $o, e_{1}, \ldots, e_{n+1}$ is

$$
V_{n+1}\left(S^{\prime}\right)=\frac{1}{(n+1)!} .
$$

Hint: Induction on dimension might be helpful.
(b) Now use the cone volume formula in a different way to find the n-volume of S.

Hint: Think of S^{\prime} as the convex hull of S with the origin.
(c) Now tweak the answer to part (b) to get a formula for τ_{n}.
4. Let ω_{n} denote the volume V_{n} of the n-dimensional ball having unit radius. Use an elementary slicing and integration argument to show that

$$
\omega_{n}=2 \omega_{n-1} \int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta d \theta
$$

5. For $t>0$ denote by $\Gamma(t)$ the Gamma function, given by

$$
\Gamma(t)=\int_{0}^{\infty} \mathrm{e}^{-x} x^{t-1} \mathrm{~d} x
$$

(a) Prove that $\Gamma(1)=1$.
(b) Prove that $\Gamma(t+1)=t \Gamma(t)$. (Hint: Try integration by parts.)
(c) Prove that if n is a positive integer then $\Gamma(n+1)=n$!.
6. This exercise will show you how to compute $\Gamma\left(\frac{1}{2}\right)$, a value to be used later for computing the volume the unit ball.
(a) Use a simple substitution to show that

$$
\Gamma\left(\frac{1}{2}\right)=\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} d x
$$

(b) Now use part (a) to show that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} .
$$

Here are some hints: We can think of the square of the integral from part (a) as the product of integrals in two independent variables, x and y.

$$
\left(\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x\right)^{2}=\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x \int_{-\infty}^{\infty} \mathrm{e}^{-y^{2}} \mathrm{~d} y=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{d} x \mathrm{~d} y
$$

Now convert from $x y$-coordinates to polar coordinates (r, θ) and finish the computation.
7. In this exercise we find a formula for the volume ω_{n} of the unit n-ball. I'll start it for you. Following a similar argument to the previous problem, but using n-variables, we have

$$
\begin{aligned}
\pi^{n / 2} & =\left(\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x\right)^{n} \\
& =\int_{-\infty}^{\infty} \mathrm{e}^{-x_{1}^{2}} \mathrm{~d} x_{1} \cdots \int_{-\infty}^{\infty} \mathrm{e}^{-x_{n}^{2}} \mathrm{~d} x_{n} \\
& =\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \\
& =\int_{u \in \mathbb{S}^{n-1}} \int_{0}^{\infty} \mathrm{e}^{-r^{2}} r^{n-1} \mathrm{~d} r \mathrm{~d} u \\
& =n \omega_{n} \int_{0}^{\infty} \mathrm{e}^{-r^{2}} r^{n-1} \mathrm{~d} r,
\end{aligned}
$$

since the surface area of the sphere \mathbb{S}^{n-1} is equal to $n \omega_{n}$. (Notice the change of variables from Cartesian to spherical coordinates in \mathbb{R}^{n}.)
Now you finish the computation: substituting $y=r^{2}$, compute the integral

$$
\int_{0}^{\infty} \mathrm{e}^{-r^{2}} r^{n-1} \mathrm{~d} r
$$

and solve for ω_{n} in terms of the gamma function.
8. Let n be a non-negative integer. Use the formula you proved in the previous problem to prove that

$$
\omega_{2 n}=\frac{\pi^{n}}{n!} \quad \text { and } \quad \omega_{2 n+1}=\frac{2^{2 n+1} \pi^{n} n!}{(2 n+1)!}
$$

