92.490/651 Supplemental Exercises

due in class on 4/26/2010

To help you with some of these exercises I have posted some extra online notes on volume and determinants that elaborate some of the ideas discussed in lecture. Those notes can be found at: faculty.uml.edu/dklain/volume-formula.pdf

es es es es

1. Find the area V_2 of the parallelogram in \mathbb{R}^2 having vertices at the four points:

$$(2,1)$$
 $(4,5)$ $(7,3)$ $(5,-1)$

25

2. Find the area V_2 of the parallelogram in \mathbb{R}^5 having vertices at the four points:

```
(2, 1, 1, 1, 1) (4, 5, 0, 1, 2) (7, 3, 0, 4, 2) (5, -1, 1, 4, 1)
```

æ

3. Let τ_n denote the *n*-volume of the unit equilateral *n*-simplex T_n . For example, $\tau_2 = \frac{\sqrt{3}}{4}$, the area of a unit equilateral triangle, while τ_3 is the volume of the tetrahedron having all unit length edges.

The following steps lead to a formula for τ_n .

Let $e_1 = (1, 0, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, ..., $e_{n+1} = (0, 0, 0, ..., 1)$, denote the standard coordinate unit vectors in \mathbb{R}^{n+1} . The convex hull *S* of these points is an equilateral *n*-simplex lying inside the plane $x_1 + \cdots + x_{n+1} = 1$ of \mathbb{R}^{n+1} . Note, however, that it is not the *unit* equilateral simplex, since each edge of *S* has length $\sqrt{2}$.

(a) Show that the (n + 1)-dimensional volume of the (n + 1)-dimensional simplex S' having vertices at o, e_1, \ldots, e_{n+1} is

$$V_{n+1}(S') = \frac{1}{(n+1)!}.$$

Hint: Induction on dimension might be helpful.

(b) Now use the cone volume formula in a different way to find the *n*-volume of S. *Hint:* Think of S' as the convex hull of S with the origin.

(c) Now tweak the answer to part (b) to get a formula for τ_n .

æ

4. Let ω_n denote the volume V_n of the *n*-dimensional ball having unit radius. Use an elementary slicing and integration argument to show that

$$\omega_n = 2\omega_{n-1} \int_0^{\frac{\pi}{2}} \cos^n \theta \ d\theta$$

5. For t > 0 denote by $\Gamma(t)$ the Gamma function, given by

$$\Gamma(t) = \int_0^\infty \mathrm{e}^{-x} x^{t-1} \mathrm{d}x.$$

- (a) Prove that $\Gamma(1) = 1$.
- (**b**) Prove that $\Gamma(t + 1) = t\Gamma(t)$. (*Hint:* Try integration by parts.)
- (c) Prove that if *n* is a positive integer then $\Gamma(n + 1) = n!$.

è**s**

6. This exercise will show you how to compute $\Gamma(\frac{1}{2})$, a value to be used later for computing the volume the unit ball.

(a) Use a simple substitution to show that

$$\Gamma\left(\frac{1}{2}\right) = \int_{-\infty}^{\infty} e^{-x^2} dx$$

(b) Now use part (a) to show that

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

Here are some hints: We can think of the square of the integral from part (a) as the product of integrals in two independent variables, x and y.

$$\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$$

Now convert from *xy*-coordinates to polar coordinates (r, θ) and finish the computation.

æ

7. In this exercise we find a formula for the volume ω_n of the unit *n*-ball. I'll start it for you. Following a similar argument to the previous problem, but using *n*-variables, we have

$$\pi^{n/2} = \left(\int_{-\infty}^{\infty} e^{-x^2} dx \right)^n$$

$$= \int_{-\infty}^{\infty} e^{-x_1^2} dx_1 \cdots \int_{-\infty}^{\infty} e^{-x_n^2} dx_n$$

$$= \int_{-\infty}^{\infty} e^{-(x_1^2 + \dots + x_n^2)} dx_1 \cdots dx_n$$

$$= \int_{u \in \mathbb{S}^{n-1}} \int_0^{\infty} e^{-r^2} r^{n-1} dr du$$

$$= n\omega_n \int_0^{\infty} e^{-r^2} r^{n-1} dr,$$

since the surface area of the sphere \mathbb{S}^{n-1} is equal to $n\omega_n$. (Notice the change of variables from Cartesian to spherical coordinates in \mathbb{R}^n .)

Now *you* finish the computation: substituting $y = r^2$, compute the integral

$$\int_0^\infty \mathrm{e}^{-r^2} r^{n-1} \, \mathrm{d} r,$$

and solve for ω_n in terms of the gamma function.

æ

8. Let n be a non-negative integer. Use the formula you proved in the previous problem to prove that

$$\omega_{2n} = \frac{\pi^n}{n!}$$
 and $\omega_{2n+1} = \frac{2^{2n+1}\pi^n n!}{(2n+1)!}$