92.490/651 Supplemental Exercises

1. Let $K \in \mathscr{K}_n$. Prove that

$$S(K)D(K) \ge V_n(K)\frac{n\omega_n}{\omega_{n-1}}$$

Recall that D(K) is the diameter of *K*. *Hint:* Think about cylinders.

è**s**

2. Let Δ denote a unit edge equilateral triangle. Compute the mixed area $A(\Delta, -\Delta)$.

æ

3. Let Q denote a regular hexagon in \mathbb{R}^2 with unit edge lengths, and let S denote a square with unit edge lengths. Suppose that both Q and S have some edges parallel to the *x*-axis. Compute the mixed area A(Q, S).

4. Let $K, L \in \mathscr{K}_2$, and suppose that $W_u(K) \leq W_u(L)$ for every direction u. Prove that, if $M \in \mathscr{K}_2$ is centrally symmetric, then

æ

$$A(K, M) \le A(L, M).$$

Hint: First, consider the case for which *M* is a polygon, and recall from Chapter 14 that every centrally symmetric polygon is a zonotope.

æ

5. Find examples of $K, L, M \in \mathcal{K}_2$ such that $W_u(K) \leq W_u(L)$ for every direction *u*, while

A(K, M) > A(L, M).

Hint: Evidently *M* can't be centrally symmetric!

æ

6. This is a problem about averaging, and does not (necessarily) use mixed areas. Let $K \in \mathcal{K}_2$.

(a) Prove that, if u and v are unit vectors in \mathbb{R}^2 such that $u \perp v$, then

$$A(K) \le W_u(K)W_v(K).$$

(**b**) Prove that, if u and v are unit vectors in \mathbb{R}^2 such that $u \perp v$, then

$$\sqrt{A(K)} \le \frac{W_u(K) + W_v(K)}{2}$$

(c) Now use an averaging argument on the result in part (b) to prove that

$$\pi \sqrt{A(K)} \le Perimeter(K).$$

Incidently, the inequality in part (c) is weak, in the sense that equality never holds unless K is a point. We will prove a better version of this inequality in class next week.

due in class on 5/3/2010