1. Let $K \in \mathscr{K}_{n}$. Prove that

$$
S(K) D(K) \geq V_{n}(K) \frac{n \omega_{n}}{\omega_{n-1}}
$$

Recall that $D(K)$ is the diameter of K.
Hint: Think about cylinders.
2. Let Δ denote a unit edge equilateral triangle. Compute the mixed area $A(\Delta,-\Delta)$.
3. Let Q denote a regular hexagon in \mathbb{R}^{2} with unit edge lengths, and let S denote a square with unit edge lengths. Suppose that both Q and S have some edges parallel to the x-axis. Compute the mixed area $A(Q, S)$.
4. Let $K, L \in \mathscr{K}_{2}$, and suppose that $W_{u}(K) \leq W_{u}(L)$ for every direction u. Prove that, if $M \in \mathscr{K}_{2}$ is centrally symmetric, then

$$
A(K, M) \leq A(L, M) .
$$

Hint: First, consider the case for which M is a polygon, and recall from Chapter 14 that every centrally symmetric polygon is a zonotope.
5. Find examples of $K, L, M \in \mathscr{K}_{2}$ such that $W_{u}(K) \leq W_{u}(L)$ for every direction u, while

$$
A(K, M)>A(L, M)
$$

Hint: Evidently M can't be centrally symmetric!
6. This is a problem about averaging, and does not (necessarily) use mixed areas. Let $K \in \mathscr{K}_{2}$.
(a) Prove that, if u and v are unit vectors in \mathbb{R}^{2} such that $u \perp v$, then

$$
A(K) \leq W_{u}(K) W_{v}(K)
$$

(b) Prove that, if u and v are unit vectors in \mathbb{R}^{2} such that $u \perp v$, then

$$
\sqrt{A(K)} \leq \frac{W_{u}(K)+W_{v}(K)}{2}
$$

(c) Now use an averaging argument on the result in part (b) to prove that

$$
\pi \sqrt{A(K)} \leq \operatorname{Perimeter}(K)
$$

Incidently, the inequality in part (c) is weak, in the sense that equality never holds unless K is a point. We will prove a better version of this inequality in class next week.

