1. Let $K \in \mathcal{K}_n$. Prove that
\[S(K)D(K) \geq V_n(K) \frac{n\omega_n}{\omega_{n-1}}. \]
Recall that $D(K)$ is the diameter of K.
Hint: Think about cylinders.

2. Let Δ denote a unit edge equilateral triangle. Compute the mixed area $A(\Delta, -\Delta)$.

3. Let Q denote a regular hexagon in \mathbb{R}^2 with unit edge lengths, and let S denote a square with unit edge lengths. Suppose that both Q and S have some edges parallel to the x-axis. Compute the mixed area $A(Q, S)$.

4. Let $K, L \in \mathcal{K}_2$, and suppose that $W_u(K) \leq W_u(L)$ for every direction u. Prove that, if $M \in \mathcal{K}_2$ is centrally symmetric, then
\[A(K, M) \leq A(L, M). \]
Hint: First, consider the case for which M is a polygon, and recall from Chapter 14 that every centrally symmetric polygon is a zonotope.

5. Find examples of $K, L, M \in \mathcal{K}_2$ such that $W_u(K) \leq W_u(L)$ for every direction u, while $A(K, M) > A(L, M)$.
Hint: Evidently M can’t be centrally symmetric!

6. This is a problem about averaging, and does not (necessarily) use mixed areas. Let $K \in \mathcal{K}_2$.
 (a) Prove that, if u and v are unit vectors in \mathbb{R}^2 such that $u \perp v$, then
 \[A(K) \leq W_u(K)W_v(K). \]
 (b) Prove that, if u and v are unit vectors in \mathbb{R}^2 such that $u \perp v$, then
 \[\sqrt{A(K)} \leq \frac{W_u(K) + W_v(K)}{2}. \]
 (c) Now use an averaging argument on the result in part (b) to prove that
 \[\pi \sqrt{A(K)} \leq \text{Perimeter}(K). \]
Incidently, the inequality in part (c) is weak, in the sense that equality never holds unless K is a point. We will prove a better version of this inequality in class next week.