92.490/651 Supplemental Exercises

Throughout this set denote by V the 3-dimensional volume and by A the area (2-dimensional volume).

1. Suppose $K_0, K_1 \in \mathscr{K}_3$ lie respectively inside parallel 2-dimensional planes H_0, H_1 of \mathbb{R}^3 , and denote by *h* the orthogonal distance (height) between these hyperplanes. The convex hull $Q = conv(K_0 \cup K_1)$ is called a *prismatoid* with *bases* K_0 and K_1 and *height h*.

If K_0 and K_1 are translation congruent sets, the Q is just a prism (or cylinder) with base K_0 and height h. If K_1 is a single point, then Q is a cone. The prismatoid is a generalization of these two geometric notions.

(a) Prove that the horizontal planar slice (parallel to H_0 and H_1) at height $z \in [0, h]$ is given by the set $(1 - \frac{z}{h})K_0 + \frac{z}{h}K_1$.

(b) Use the formula for areas of Minkowski sums (and mixed areas) to prove that

$$V(Q) = \frac{h}{3} \Big(A(K_0) + A(K_0, K_1) + A(K_1) \Big).$$

Hint: Set up a volume integral for Q by integrating the areas of suitable parallel slices of Q.

æ

2. Recall that if *P* is a polytope in \mathbb{R}^3 having facet unit normals u_1, \ldots, u_m , then

$$V(P) = \frac{1}{3} \sum_{i=1}^{m} h_P(u) A(P^u).$$

Let P, Q be polytopes and $\epsilon > 0$. Use the previous identity and our work on mixed areas to show that $V(P + \epsilon Q)$ is a cubic polynomial in ϵ . Specifically, show that

$$V(P + \epsilon Q) = V(P) + c_1\epsilon + c_2\epsilon^2 + V(Q)\epsilon^3,$$

where c_1 and c_2 are constants that depend only on *P* and *Q*.

(Your answer should express c_1 and c_2 in terms of support functions and mixed areas of various facets of P and Q.)

æ

Remark: Using a standard continuity argument it follows that, for any $K, L \in \mathcal{K}_3$, the function $V(K + \epsilon L)$ is a cubic polynomial in ϵ as well (even when *K* and *L* are not polytopes).

è

3. Following the notation of the previous problem, define

$$V(P, P, Q) = \frac{1}{3}c_1$$
 and $V(Q, Q, P) = \frac{1}{3}c_2$.

and prove that

$$BV(P, P, Q) = \lim_{\epsilon \to 0} \frac{V(P + \epsilon Q) - V(P)}{\epsilon}.$$

Remark: Once again it follows by an approximation argument that the same result holds for arbitrary $K, L \in \mathcal{K}_3$.

4. Let *B* denote the unit ball in \mathbb{R}^3 and let *u* be a unit vector. Prove that

(a)
$$V(K, K, K) = V(K)$$

(b) $3V(K, K, B) = S(K)$
(c) $V(K, K, u) = 0$
(d) $3V(K, K, \overline{ou}) = A(K|u^{\perp})$

5. Let $K \in \mathscr{K}_2$, let *m* be a positive integer, and let ϕ_1, \ldots, ϕ_m denote a sequence of rotations of \mathbb{R}^2 around the origin. The set

æ

$$\frac{1}{m}(\phi_1 K + \dots + \phi_m K)$$

is called a *rotation mean* of K. Let \mathcal{M}_K denote the set of *all* rotation means of K.

(a) Prove that, if L is a rotation mean of K, then K and L have the same perimeter.

(b) Prove that, if *L* is a rotation mean of *K*, then $A(L) \ge A(K)$.

(c) Prove that equality holds in part (b) if and only if *K* and *L* are homothetic.

(d) Prove that there is a ball of some radius r > 0 such that, if L is a rotation mean of K, then $L \subseteq rB$.

Remark: It follows from part (d) and the compactness theorem that every infinite sequence of rotation means of K has a convergent subsequence. It also follows from this uniform boundedness that the *areas* of rotation means of K are bounded above by some finite number. Let

$$\alpha = \sup_{L \in \mathcal{M}_K} A(L).$$

By the compactness theorem there is a sequence $\{L_i\}$ in \mathcal{M}_K that converges to a convex body L_* such that $A(L_*) = \alpha$. Note that L_* itself might not be a rotation mean of K.

(e) Prove that L_* is a disk.

(f) If Perimeter(K) = 1 then what is α ?

æ

6. Suppose that $f : \mathscr{K}_2 \to \mathbb{R}$ is a continuous function on convex bodies such that

$$f(K+L) = f(K) + f(L)$$

for all $K, L \in \mathscr{K}_2$. Suppose also that f(K + v) = f(K) and $f(\phi K) = f(K)$ for all $K \in \mathscr{K}_2$, all $v \in \mathbb{R}^2$, and every rotation ϕ . (In other words, f is translation invariant and rotation invariant.)

Let *B* denote the unit disc in \mathbb{R}^2 , and let c = f(B). Prove that, if $K \in \mathscr{K}_2$, then

$$f(K) = \frac{c}{2\pi} Perimeter(K).$$

Hint: Use the rotation means from problem **5** above.

Remark: This problem shows that, up to a constant multiple, perimeter is the only continuous, rigid-motion invariant, Minkowski additive function on convex sets in the plane.