Throughout this set denote by V the 3-dimensional volume and by A the area (2-dimensional volume).

1. Suppose $K_{0}, K_{1} \in \mathscr{K}_{3}$ lie respectively inside parallel 2-dimensional planes H_{0}, H_{1} of \mathbb{R}^{3}, and denote by h the orthogonal distance (height) between these hyperplanes. The convex hull $Q=$ $\operatorname{conv}\left(K_{0} \cup K_{1}\right)$ is called a prismatoid with bases K_{0} and K_{1} and height h.

If K_{0} and K_{1} are translation congruent sets, the Q is just a prism (or cylinder) with base K_{0} and height h. If K_{1} is a single point, then Q is a cone. The prismatoid is a generalization of these two geometric notions.
(a) Prove that the horizontal planar slice (parallel to H_{0} and H_{1}) at height $z \in[0, h]$ is given by the set $\left(1-\frac{z}{h}\right) K_{0}+\frac{z}{h} K_{1}$.
(b) Use the formula for areas of Minkowski sums (and mixed areas) to prove that

$$
V(Q)=\frac{h}{3}\left(A\left(K_{0}\right)+A\left(K_{0}, K_{1}\right)+A\left(K_{1}\right)\right)
$$

Hint: Set up a volume integral for Q by integrating the areas of suitable parallel slices of Q.
2. Recall that if P is a polytope in \mathbb{R}^{3} having facet unit normals u_{1}, \ldots, u_{m}, then

$$
V(P)=\frac{1}{3} \sum_{i=1}^{m} h_{P}(u) A\left(P^{u}\right) .
$$

Let P, Q be polytopes and $\epsilon>0$. Use the previous identity and our work on mixed areas to show that $V(P+\epsilon Q)$ is a cubic polynomial in ϵ. Specifically, show that

$$
V(P+\epsilon Q)=V(P)+c_{1} \epsilon+c_{2} \epsilon^{2}+V(Q) \epsilon^{3}
$$

where c_{1} and c_{2} are constants that depend only on P and Q.
(Your answer should express c_{1} and c_{2} in terms of support functions and mixed areas of various facets of P and Q.)

Remark: Using a standard continuity argument it follows that, for any $K, L \in \mathscr{K}_{3}$, the function $V(K+\epsilon L)$ is a cubic polynomial in ϵ as well (even when K and L are not polytopes).
3. Following the notation of the previous problem, define

$$
V(P, P, Q)=\frac{1}{3} c_{1} \quad \text { and } \quad V(Q, Q, P)=\frac{1}{3} c_{2} .
$$

and prove that

$$
3 V(P, P, Q)=\lim _{\epsilon \rightarrow 0} \frac{V(P+\epsilon Q)-V(P)}{\epsilon}
$$

Remark: Once again it follows by an approximation argument that the same result holds for arbitrary $K, L \in \mathscr{K}_{3}$.
4. Let B denote the unit ball in \mathbb{R}^{3} and let u be a unit vector. Prove that
(a) $V(K, K, K)=V(K)$
(b) $3 V(K, K, B)=S(K)$
(c) $V(K, K, u)=0$
(d) $3 V(K, K, \overline{o u})=A\left(K \mid u^{\perp}\right)$
5. Let $K \in \mathscr{K}_{2}$, let m be a positive integer, and let $\phi_{1}, \ldots, \phi_{m}$ denote a sequence of rotations of \mathbb{R}^{2} around the origin. The set

$$
\frac{1}{m}\left(\phi_{1} K+\cdots+\phi_{m} K\right)
$$

is called a rotation mean of K. Let \mathcal{M}_{K} denote the set of all rotation means of K.
(a) Prove that, if L is a rotation mean of K, then K and L have the same perimeter.
(b) Prove that, if L is a rotation mean of K, then $A(L) \geq A(K)$.
(c) Prove that equality holds in part (b) if and only if K and L are homothetic.
(d) Prove that there is a ball of some radius $r>0$ such that, if L is a rotation mean of K, then $L \subseteq r B$.

Remark: It follows from part (d) and the compactness theorem that every infinite sequence of rotation means of K has a convergent subsequence. It also follows from this uniform boundedness that the areas of rotation means of K are bounded above by some finite number. Let

$$
\alpha=\sup _{L \in \mathcal{M}_{K}} A(L) .
$$

By the compactness theorem there is a sequence $\left\{L_{i}\right\}$ in \mathcal{M}_{K} that converges to a convex body L_{*} such that $A\left(L_{*}\right)=\alpha$. Note that L_{*} itself might not be a rotation mean of K.
(e) Prove that L_{*} is a disk.
(f) If $\operatorname{Perimeter}(K)=1$ then what is α ?
6. Suppose that $f: \mathscr{K}_{2} \rightarrow \mathbb{R}$ is a continuous function on convex bodies such that

$$
f(K+L)=f(K)+f(L)
$$

for all $K, L \in \mathscr{K}_{2}$. Suppose also that $f(K+v)=f(K)$ and $f(\phi K)=f(K)$ for all $K \in \mathscr{K}_{2}$, all $v \in \mathbb{R}^{2}$, and every rotation ϕ. (In other words, f is translation invariant and rotation invariant.)
Let B denote the unit disc in \mathbb{R}^{2}, and let $c=f(B)$. Prove that, if $K \in \mathscr{K}_{2}$, then

$$
f(K)=\frac{c}{2 \pi} \operatorname{Perimeter}(K) .
$$

Hint: Use the rotation means from problem 5 above.
Remark: This problem shows that, up to a constant multiple, perimeter is the only continuous, rigid-motion invariant, Minkowski additive function on convex sets in the plane.

