
92.490/651 Supplemental Exercises due in class on 5/10/2010

Throughout this set denote by V the 3-dimensional volume and by A the area (2-dimensional
volume).

1. Suppose K0,K1 ∈ K3 lie respectively inside parallel 2-dimensional planes H0,H1 of R3, and
denote by h the orthogonal distance (height) between these hyperplanes. The convex hull Q =
conv(K0 ∪ K1) is called a prismatoid with bases K0 and K1 and height h.

If K0 and K1 are translation congruent sets, the Q is just a prism (or cylinder) with base K0 and
height h. If K1 is a single point, then Q is a cone. The prismatoid is a generalization of these two
geometric notions.

(a) Prove that the horizontal planar slice (parallel to H0 and H1) at height z ∈ [0, h] is given by the
set (1 − z

h )K0 +
z
h K1.

(b) Use the formula for areas of Minkowski sums (and mixed areas) to prove that

V(Q) =
h
3

(
A(K0) + A(K0,K1) + A(K1)

)
.

Hint: Set up a volume integral for Q by integrating the areas of suitable parallel slices of Q.

§

2. Recall that if P is a polytope in R3 having facet unit normals u1, . . . , um, then

V(P) =
1
3

m∑
i=1

hP(u)A(Pu).

Let P,Q be polytopes and ε > 0. Use the previous identity and our work on mixed areas to show
that V(P + εQ) is a cubic polynomial in ε. Specifically, show that

V(P + εQ) = V(P) + c1ε + c2ε
2 + V(Q)ε3,

where c1 and c2 are constants that depend only on P and Q.

(Your answer should express c1 and c2 in terms of support functions and mixed areas of various
facets of P and Q.)

§

Remark: Using a standard continuity argument it follows that, for any K, L ∈ K3, the function
V(K + εL) is a cubic polynomial in ε as well (even when K and L are not polytopes).

§

3. Following the notation of the previous problem, define

V(P, P,Q) = 1
3 c1 and V(Q,Q, P) = 1

3 c2.

and prove that

3V(P, P,Q) = lim
ε→0

V(P + εQ) − V(P)
ε

.

Remark: Once again it follows by an approximation argument that the same result holds for
arbitrary K, L ∈ K3.

§



4. Let B denote the unit ball in R3 and let u be a unit vector. Prove that

(a) V(K,K,K) = V(K)

(b) 3V(K,K, B) = S (K)

(c) V(K,K, u) = 0

(d) 3V(K,K, ou) = A(K|u⊥)

§

5. Let K ∈ K2, let m be a positive integer, and let φ1, . . . , φm denote a sequence of rotations of R2

around the origin. The set
1
m

(
φ1K + · · · + φmK

)
is called a rotation mean of K. Let MK denote the set of all rotation means of K.

(a) Prove that, if L is a rotation mean of K, then K and L have the same perimeter.

(b) Prove that, if L is a rotation mean of K, then A(L) ≥ A(K).

(c) Prove that equality holds in part (b) if and only if K and L are homothetic.

(d) Prove that there is a ball of some radius r > 0 such that, if L is a rotation mean of K, then
L ⊆ rB.

Remark: It follows from part (d) and the compactness theorem that every infinite sequence of
rotation means of K has a convergent subsequence. It also follows from this uniform boundedness
that the areas of rotation means of K are bounded above by some finite number. Let

α = sup
L∈MK

A(L).

By the compactness theorem there is a sequence {Li} in MK that converges to a convex body L∗
such that A(L∗) = α. Note that L∗ itself might not be a rotation mean of K.

(e) Prove that L∗ is a disk.

(f) If Perimeter(K) = 1 then what is α?

§

6. Suppose that f : K2 → R is a continuous function on convex bodies such that

f (K + L) = f (K) + f (L)

for all K, L ∈ K2. Suppose also that f (K+v) = f (K) and f (φK) = f (K) for all K ∈ K2, all v ∈ R2,
and every rotation φ. (In other words, f is translation invariant and rotation invariant.)

Let B denote the unit disc in R2, and let c = f (B). Prove that, if K ∈ K2, then

f (K) =
c

2π
Perimeter(K).

Hint: Use the rotation means from problem 5 above.

Remark: This problem shows that, up to a constant multiple, perimeter is the only continuous,
rigid-motion invariant, Minkowski additive function on convex sets in the plane.


