Determinants and volume

These notes elaborate a topic covered in lecture on Monday, April 12.

Let X_{1}, \ldots, X_{k} be a family of column vectors in \mathbb{R}^{n}, and let

$$
Q=\left\{a_{1} X_{1}+\cdots+a_{k} X_{k} \mid 0 \leq a_{i} \leq 1\right\} .
$$

If the vectors X_{1}, \ldots, X_{k} are linearly independent, then the set Q is a k-dimensional parallelopiped in \mathbb{R}^{n}.

What is the k-dimensional volume of this parallelopiped? (By k-dimensional volume, we mean the volume of Q taken inside the k-dimensional affine hull of Q)

Set up a matrix A using the X_{i} as the columns of A, that is, let

$$
A=\left[\begin{array}{l|l|l|l}
X_{1} & X_{2} & \cdots & X_{k}
\end{array}\right] .
$$

Note that each vector $X_{i} \in \mathbb{R}^{n}$ has n coordinates, so that A is an $n \times k$ matrix. We will prove the following formula for the k-volume of a k-dimensional parallelopiped in \mathbb{R}^{n}.

Theorem 1.

$$
V_{k}(Q)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Here A^{T} denotes the matrix transpose of A.
Proof. Perform the Gram-Schmidt process on the columns of A to obtain a new set of columns that are orthogonal. This process is performed by doing certain column operations on A that add (or subtract) multiples of one column from another. Each operations of this kind can be accomplished by multiplying on the right by a square $k \times k$ matrix of determinant 1 .

Meanwhile, these column operations can interpreted geometrically as slicing off one side of the parallelopiped and gluing that slice back onto the opposite end, so that k-volume is also preserved.

The end result is a new matrix $A M$, where the $k \times k$ invertible matrix M is product of (invertible) elementary matrices (representing the column operations we had to do on A), so that $\operatorname{det}(M)=1$.

The matrix $A M$ is a new $n \times k$ matrix

$$
A M=\left[\begin{array}{c|c|c|c}
Y_{1} \mid & Y_{2} & \cdots & Y_{k}
\end{array}\right]
$$

such that Y_{1}, \ldots, Y_{k} are orthogonal, and such that the new box

$$
Q^{\prime}=\left\{a_{1} Y_{1}+\cdots+a_{k} Y_{k} \mid 0 \leq a_{i} \leq 1\right\}
$$

has the same k-volume as the original box Q.
Since the columns Y_{i} of $A M$ are orthogonal, we have

$$
(A M)^{T}(A M)=\left[\begin{array}{cccc}
Y_{1}^{T} Y_{1} & 0 & \cdots & 0 \\
0 & Y_{2}^{T} Y_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & Y_{k}^{T} Y_{k}
\end{array}\right]=D
$$

where D a diagonal matrix, whose i-th diagonal entry $d_{i}=Y_{i}^{T} Y_{i}=\left|Y_{i}\right|^{2}$. the square of the length of the vector Y_{i}.

Since Q^{\prime} is a box with orthogonal edges, its k-volume is easy to compute; it's just the product of the lengths of the edges in each direction. So

$$
V_{k}\left(Q^{\prime}\right)=\left|Y_{1}\right|\left|Y_{2}\right| \cdots\left|Y_{k}\right| .
$$

Hence,

$$
V_{k}\left(Q^{\prime}\right)^{2}=\left|Y_{1}\right|^{2}\left|Y_{2}\right|^{2} \cdots\left|Y_{k}\right|^{2}=\operatorname{det}\left[(A M)^{T}(A M)\right] .
$$

But recall that $\operatorname{det}(M)=1$. It follows that

$$
\operatorname{det}\left[(A M)^{T}(A M)\right]=\operatorname{det}\left[M^{T}\left(A^{T} A\right) M\right]=\operatorname{det}\left(M^{T}\right) \operatorname{det}\left(A^{T} A\right) \operatorname{det}(M)=\operatorname{det}\left(A^{T} A\right) .
$$

Putting everything together, we find that

$$
V_{k}(Q)^{2}=V_{k}\left(Q^{\prime}\right)^{2}=\operatorname{det}\left[(A M)^{T}(A M)\right]=\operatorname{det}\left(A^{T} A\right),
$$

so that

$$
V_{k}(Q)=\sqrt{\operatorname{det}\left(A^{T} A\right)} .
$$

For example, to compute the area V_{2} of the parallelogram $Q_{\mathbf{v}, \mathbf{w}}$ in \mathbb{R}^{n} with vertices at the origin o and the points $\mathbf{v}, \mathbf{w}, \mathbf{v}+\mathbf{w}$, set A to be the $n \times 2$ matrix

$$
A=[\mathbf{v} \mid \mathbf{w}] .
$$

In this case, $A^{T} A$ is the 2×2 matrix of vector dot products:

$$
A^{T} A=\left[\begin{array}{c|c}
\mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{w} \\
\hline \mathbf{w} \cdot \mathbf{v} & \mathbf{w} \cdot \mathbf{w}
\end{array}\right],
$$

so that

$$
V_{2}\left(Q_{\mathbf{v}, \mathbf{w}}\right)=\sqrt{(\mathbf{v} \cdot \mathbf{v})(\mathbf{w} \cdot \mathbf{w})-(\mathbf{v} \cdot \mathbf{w})^{2}} .
$$

