95.141 Exam 3a, May 5, 2010

Section Number $\qquad$
Section Instructor $\qquad$

Name $\qquad$ Last Name First Name

Last 3 Digits of Student ID number: $\qquad$
Answer all questions, beginning each new question in the space provided. Show all work. Show all formulas used for each problem prior to substitution of numbers. Label diagrams and include appropriate units for your answers! Write your name and section number at the top of each page in the space provided and write the name of your section instructor in the place provided on this cover sheet. You may use an alphanumeric calculator (one which exhibits physical formulas) during the exam, as long as you do not program any numbers to memory. By using an alphanumeric calculator you agree to allow us to check its memory during the exam. Simple scientific calculators are always OK.

## Score on each problem:

$\qquad$
2. $\qquad$
3. $\qquad$
4. $\qquad$
Total Score (based on 100 pts)

Be prepared to show your student ID Card

Name (last name only) $\qquad$
$\qquad$
Problem 1 ( 25 points - 5 points each, no partial credit on this problem only, don't forget units if a fill-in answer)

1-1. A figure skater starts a spin with her arms outstretched. Halfway through the spin, she brings her arms in, to her sides. This action will result in her angular momentum
A) Increasing
B) Decreasing
C) Remaining the Same
D) Disappearing

1-2. Two objects sliding on a frictionless plane collide. What can you say, with certainty, about this collision?
A) Momentum is conserved
B) It is perfectly inelastic
C) Kinetic Energy is Conserved
D) Mechanical Energy is conserved

1-3. A disc accelerates from rest with constant $\alpha=0.8 \mathrm{rad} / \mathrm{s}^{2}$. During its angular acceleration it completes 5 revolutions. What is the disc's angular velocity after 5 revolutions?
A) $2.83 \mathrm{rad} / \mathrm{s}$
B) $7.09 \mathrm{rad} / \mathrm{s}$
C) $8.00 \mathrm{rad} / \mathrm{s}$
D) $50.26 \mathrm{rad} / \mathrm{s}$

1-4. Calculate the vector cross product of $\vec{A}=2 \hat{i}+8 \hat{j}$ and $\vec{B}=-2 \hat{j}+4 \hat{k}$.
$\vec{A} \times \vec{B}=$ $\qquad$
1-5. Two uniform 2D squares are stacked, centered, as shown below. What is the center of mass of this system? $\mathrm{L} 1=2 \mathrm{~m}, \mathrm{~L} 2=1 \mathrm{~m}, \mathrm{M} 1=4 \mathrm{~kg}, \mathrm{M} 2=2 \mathrm{~kg}$.

$\mathrm{CM}=$

Name (last name only) $\qquad$
$\qquad$
Problem 2 ( 25 points): A mass ( $\mathrm{M}_{\mathrm{A}}=3 \mathrm{~kg}$ ) slides down a frictionless ramp of height $\mathrm{H}=12 \mathrm{~m}$ and collides with a second mass ( $\mathrm{M}_{\mathrm{B}}=5 \mathrm{~kg}$ ), moving towards mass A at $\mathrm{v}_{\mathrm{B}}=8 \mathrm{~m} / \mathrm{s}$. Assume the collision occurs with both masses moving horizontally.

a) (5 pts) What is the velocity of Mass A at the bottom of the ramp?

$$
v_{A}=
$$

Name (last name only) $\qquad$
b) (10pts) Assuming the collision is elastic, what are the velocities of the two masses after the collision?

$$
\begin{aligned}
& v_{A}^{\prime}= \\
& v_{B}^{\prime}=
\end{aligned}
$$

c) (10pts) How far back up the ramp does Mass A travel?
$\mathrm{H}_{\text {new }}=$ $\qquad$

Name (last name only) $\qquad$
$\qquad$
Problem 3 ( 25 points): A rectangular block ( $\mathrm{M} 2=12 \mathrm{~kg}$ ) is attached to a merry-goround ( $\mathrm{M} 1=80 \mathrm{~kg}, \mathrm{R}=6 \mathrm{~m}$ ) such that the block extends from the axis of rotation to the edge of the merry-go-round. The moment of inertia of a disc is $\mathrm{I}_{\text {disc }}=\mathrm{MR}^{2} / 2$, while the moment of inertia for a bar of length L rotating about one end is $\mathrm{I}_{\text {rect. }}=\mathrm{ML}^{2} / 3$.

a) (5 pts) What is the moment of inertia (about the origin) of the merry-go-round and block?

$$
I_{\text {Total }}=
$$

$\qquad$
b) ( 8 pts ) A bullet $\left(\mathrm{M}_{3}=1 \mathrm{~kg}\right)$ is shot with a velocity of $\mathrm{v}=300 \mathrm{~m} / \mathrm{s}$ into the midpoint of the rectangular block. Calculate the angular momentum of the bullet (about the origin) before it hits the block.

$$
L_{\text {bullet }}=
$$

Name (last name only) $\qquad$ Section Number $\qquad$
c) ( 5 pts ) The bullet embeds in the block. What is the moment of inertia of the bullet + block + merry-go-round system after impact?

$$
I^{\prime}=
$$

d) (7pts) What is the angular velocity of the system following impact?

Name (last name only) $\qquad$
$\qquad$
Problem 4 ( 25 points): Two mass $\left(\mathrm{M}_{\mathrm{A}}=2 \mathrm{~kg}, \mathrm{M}_{\mathrm{B}}=6 \mathrm{~kg}\right.$ ) are connected by a massless cord wrapped around a hoop-shaped pulley of mass $\mathrm{M}=45 \mathrm{~kg}$. $\mathrm{I}_{\text {hoop }}=\mathrm{MR}^{2}$.

a) (5 pts) Assuming mass A is sitting just above the ground (no normal force), draw free body diagrams for two mass and the hoop. Indicate your coordinate system for each.
b) (5pts) Write out Newton's Second Law (in rotational or translational form) for each of the three objects.

Name (last name only) $\qquad$ Section Number $\qquad$
c) (10 pts) If the system is released from rest, what will the acceleration of the masses be?

$$
a=
$$

d) (5pts) If mass B starts $\mathrm{h}=5 \mathrm{~m}$ above the ground, how long will it take mass B to hit the ground?

### 95.141 Spring 2010: Formula Sheet

## - Trig



- Quadratic Formula
$a x^{2}+b x+c=0$ has solutions:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Misc. Formulas

Circumference of a circle : $2 \pi r$
Area of a Circle : $\pi r^{2}$
Surface Area of a Sphere : $4 \pi r^{2}$
Volume of a Sphere : $\frac{4}{3} \pi r^{3}$
Volume of a Cylinder: $\mathrm{h} \pi \mathrm{r}^{2}$

- Derivatives
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}(n \neq 0)$
$\frac{d}{d x}(\cos a x)=-a \sin a x$ (ax in radians)
$\frac{d}{d x}(\sin a x)=a \cos a x$ (ax in radians)
$\frac{d}{d x}(\ln x)=\frac{1}{x} \quad, \quad \frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
Chain Rule $: \frac{d}{d x}(f(g(x)))=\frac{d f(g)}{d g} \frac{d g(x)}{d x}$
- Integrals

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+C \\
& \int \frac{d x}{x}=\ln x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \cos x d x=\sin x+C
\end{aligned}
$$

- Conversions

1 liter $=1 \times 10^{-3} \mathrm{~m}^{3} \quad, \quad 1 \mathrm{ft}=0.3048 \mathrm{~m}$
1 mile $=1609 \mathrm{~m} \quad, \quad 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm}=0.001 \mathrm{~m}, 1 \mathrm{~g}=0.001 \mathrm{~kg}$

- Units

Velocity $\rightarrow \mathrm{dx} / \mathrm{dt}=\mathrm{m} / \mathrm{s}$
Acceleration $\rightarrow d^{d^{2} x} / d t^{2}=m / s^{2}$
Force $\rightarrow$ Newton $(N)=k g m / \mathrm{s}^{2}$
Momentum $\rightarrow \mathrm{kgm} / \mathrm{s}$
Torque $\rightarrow \mathrm{N}-\mathrm{m}$
Angular Momentum $\rightarrow{ }^{\mathrm{kgm}}{ }^{2} / \mathrm{s}$
SI Units[mass, length, time] $=[\mathrm{kg}, \mathrm{m}, \mathrm{s}]$

- Constants

$$
\begin{aligned}
& G=6.67 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}^{2}} \\
& g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \pi \approx 3146 \\
& e \approx 2.718
\end{aligned}
$$

Distributive Rule : $\frac{d}{d x}(f(x)+g(x))=\frac{d f(x)}{d x}+\frac{d g(x)}{d x} \quad \begin{aligned} & \text { RadiusEarth }=6.4 \times 10^{6} \mathrm{~m} \\ & \text { MassEarth }=5.98 \times 10^{24} \mathrm{~kg}\end{aligned}$

### 95.141 Spring 2010 : Formula Sheet

- One Dimensional Motion
displacement $=\Delta x$
average velocity $=\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}$ average acceleration $=\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$
$v(t)=\frac{d x(t)}{d t}$ (instantaneous)
$a(t)=\frac{d v(t)}{d t}=\frac{d^{2} x(t)}{d t^{2}}$ (instantaneous)
- Motion with constant a
(one dimensional)

$$
\begin{aligned}
& x(t)=x_{o}+v_{x o} t+\frac{1}{2} a t^{2} \\
& v(t)=v_{x o}+a t \quad, \quad a(t)=\mathrm{constant} \\
& v^{2}=v_{x o}^{2}+2 a\left(x-x_{o}\right)
\end{aligned}
$$

- Projectile Motion

For motion over level ground :

$$
\text { Range }=\frac{v_{o}^{2} \sin \left(2 \theta_{o}\right)}{g}
$$

- X-Y Plane Motion (with constant acceleration)

$$
x(t)=x_{o}+v_{x o} t+1 / 2 a_{x} t^{2}
$$

$$
v_{x}(t)=v_{x o}+a_{x} t \quad, \quad a_{x}(t)=a_{x}(\text { constant })
$$

$$
y(t)=y_{o}+v_{y o} t+1 / 2 a_{y} t^{2}
$$

$$
v_{y}(t)=v_{y o}+a_{y} t \quad, \quad a_{y}(t)=a_{y}(\text { constant })
$$

- Circular Motion Arc Length $=R \Delta \theta$
$\omega=\frac{d \theta}{d t} \quad, \quad v_{\text {tan }}=\omega R$ $T=\frac{1}{f}=\frac{2 \pi}{\omega} \quad, \quad \omega=2 \pi f$ $a_{\text {centripetd }}=\frac{v^{2}}{R}=R \omega^{2}$
- Dot, Cross Product
$\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$
$\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$
$\vec{A} \bullet \vec{B}=\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right)=|A \| B| \cos \theta$
$\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$
$=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}$
$=|A||B| \sin \theta$


## - Frictional Forces

$F_{s-\max }=\mu_{s} F_{N} \quad, \quad F_{k}=\mu_{k} F_{N} \quad, \quad \mu_{s}>\mu_{k}$

- Work and Energy

Work Energy Theorem $\rightarrow \mathrm{W}_{\text {net }}=\Delta K E$
$K E=\frac{1}{2} m v^{2} \quad, \quad \Delta K E=K E_{2}-K E_{1}$
One Dimension, F constant $: \mathrm{W}=\mathrm{F} \Delta \mathrm{x}$
MoreGenerally: $\mathrm{W}=\int_{\vec{F}_{1}}^{\vec{F}_{2}} \overrightarrow{\mathrm{~F}} \bullet \mathrm{~d} \vec{r}$
Power : $P=\frac{d W}{d t}$ (Watts)
$1-\mathrm{D}: P=F v$

- Potential Energy
$U(x)=U_{o}\left(x_{o}\right)-\int_{x_{o}}^{x} F d x \quad, \quad F(x)=-\frac{d U(x)}{d x}$
Gravity of Earth's Surface : $\mathrm{U}(\mathrm{y})=\mathrm{U}_{\mathrm{o}}+\mathrm{mg} \Delta \mathrm{y}$
General Expression for Gravitational Potential :
$U(r)=-\frac{G M_{1} M_{2}}{r}$
For Springs : $U(x)=\frac{1}{2} k x^{2}$


### 95.141 Spring 2010: Formula Sheet

- Conservative Energy Systems

$$
E_{\text {tot }}=K+U(\text { constant })
$$

$\stackrel{\text { Center of Mass }}{\text { • } \vec{r}_{C M}=\frac{1}{M_{\text {total }}}\left[m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\ldots m_{n} \vec{r}_{n}\right]=\frac{\sum_{i}^{i} \vec{r}_{i} m_{i}}{\sum_{i} m_{i}}, ~}$

- Kepler's $3^{\text {rd }}$ Law, Force Grav.

$$
\begin{aligned}
& \left(\frac{T_{1}}{T_{2}}\right)^{2}=\left(\frac{R_{1}}{R_{2}}\right)^{3}, \frac{T^{2}}{R^{3}}=\frac{4 \pi^{2}}{G M} \\
& F_{\text {gravity }}=\frac{-G M_{1} M_{2}}{r^{2}}
\end{aligned}
$$

- Harmonic Motion
for 1D : $x_{c m}=\frac{1}{M_{\text {total }}}\left[m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\ldots m_{n} x_{n}\right] \quad F=-k x \quad, \quad U(x)=\frac{1}{2} k x^{2} \quad, \quad \omega=\sqrt{\frac{k}{m}}$ $\vec{F}_{\text {net }}=M_{\text {total }} \vec{a}_{C M}$
- Momentum and Impulse

$$
\vec{p}=m \vec{v} \quad, \quad \vec{F}=\frac{d \vec{p}}{d t}
$$

Impulse: $\vec{J}=\int \vec{F} d t=F_{\text {ave }} \Delta t=\Delta \vec{p}$
If no external Forces (only internal
Forces) then momentum is conserved.
$x(t)=A \cos (\omega t+\phi)$
Damped Harmonic Motion (damp.const.b)
$x(t)=A e^{-\lambda t} \cos \left(\omega^{\prime} t+\phi\right)$
$\gamma=b / 2 m \quad, \quad \omega^{\prime}=\sqrt{k / m-b^{2} / 4 m^{2}}$
Forced Harmonic Motion(Forcing freq. $\omega$ )
$x(t)=A(\omega) \cos \left(\omega t+\phi_{o}\right) \quad, \quad \omega_{o}=\sqrt{k / m}$

- 1-D Elastic Collisions (2masses) $v_{1 i}-v_{2 i}=v_{2 f}-v_{1 f} \mathrm{KE}, \overrightarrow{\mathrm{p}}$ conserved
- Rotational Motion (const. $\alpha$ )

$$
\begin{aligned}
& \theta(t)=\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2} \\
& \omega(t)=\omega_{o}+\alpha t \\
& \alpha(t)=\alpha(\text { constant })
\end{aligned}
$$

- Rotational Motion (general)
$T=\frac{1}{f}=\frac{2 \pi}{\omega} \quad, \quad K E_{\text {rot }}=\frac{1}{2} I \omega^{2}$
$I=\sum_{i} m_{i} R_{i}^{2}=\int \vec{r}^{2}$
Parallel Axis Theorem : $I_{\|}=I_{C M}+M h^{2}$
$\vec{\tau}=R F \sin \theta=\vec{R} \times \vec{F}=I \vec{\alpha}$
$\vec{L}=I \vec{\omega}=\vec{R} \times \vec{p}$
$v_{\mathrm{tan}}=R \omega \quad, \quad a_{\mathrm{tan}}=R \alpha$
$A(\omega)=\frac{F_{o}}{m \sqrt{\left(\omega^{2}-\omega_{o}^{2}\right)^{2}+b^{2} \omega^{2} / m^{2}}}$
- Pendulums $\omega=\sqrt{\frac{g}{\ell}}=\frac{2 \pi}{T}$
- Waves
$\lambda=$ wavelength, distance between crests (fixed t )
$\mathrm{T}=$ Period, time between crests (fixed x )
Equation for wave travelling in +x direction :
$D(x, t)=A \sin (k x-\omega t)$ or $A \cos (k x-\omega t)$
Equation for wave travelling in -x direction :
$D(x, t)=A \sin (k x+\omega t)$ or $A \cos (k x+\omega t)$
$\lambda=\frac{2 \pi}{k}$
$v_{\text {wave }}=\lambda f \quad, \quad T=\frac{1}{f}=\frac{2 \pi}{\omega}$
For Strings with tension $\mathrm{T}: v=\sqrt{\frac{T}{\mu}}$

