95.141 Final Exam, December 21, 2009

Section Number \qquad
Section Instructor \qquad
Name \qquad , \qquad
Last Name First Name
Last 3 Digits of Student ID number: \qquad
Answer all questions, beginning each new question in the space provided. Show all work. Show all formulas used for each problem prior to substitution of numbers. Label diagrams and include appropriate units for your answers! Write your name and section number at the top of each page in the space provided and write the name of your section instructor in the place provided on this cover sheet. You may use an alphanumeric calculator (one which exhibits physical formulas) during the exam, as long as you do not program any numbers to memory. By using an alphanumeric calculator you agree to allow us to check its memory during the exam. Simple scientific calculators are always OK .

Score on each problem:

1. \qquad
2. \qquad
3. \qquad
4.

5.
6.
7.
8. \qquad

Total Score (based on 200 pts)

Be prepared to show your student ID Card

Name (last name only) \qquad
\qquad
Problem 1 (25 points - 5 points each, no partial credit on this problem only, don't forget units if a fill-in answer)

1-1. A centrifuge takes 5 seconds to accelerate from rest to $20,000 \mathrm{rpm}$. Assuming constant acceleration, what is the angular acceleration of the centrifuge?
A) $405 \mathrm{rad} / \mathrm{s}$
B) $419 \mathrm{rad} / \mathrm{s}^{2}$
C) $2094 \mathrm{rad} / \mathrm{s}$
D) $4000 \mathrm{rad} / \mathrm{s}^{2}$

1-2. What is the torque (in $\mathrm{N}-\mathrm{m}$) exerted by the Force \vec{F} below, when exerted at \vec{r} ?

$$
\vec{r}=2 \hat{i}+4 \hat{k} \quad \vec{F}=4 \hat{i}-3 \hat{j}
$$

A) $12 \hat{i}+16 \hat{j}-6 \hat{k}$
B) 0
C) $4 \hat{i}-6 \hat{j}+3 \hat{k}$
D) -4

For problems 1-3, 1-4, 1-5, and 1-6:

$$
D(x, t)=3 \sin \left(\frac{\pi}{4} x-6 \pi t\right)
$$

1-3. What is the amplitude of the wave described by $\mathrm{D}(\mathrm{x}, \mathrm{t})$?

$$
A=
$$

1-4. What is the wavelength of the wave described by $\mathrm{D}(\mathrm{x}, \mathrm{t})$?

$$
\lambda=
$$

1-5. With what speed is the wave described by $\mathrm{D}(\mathrm{x}, \mathrm{t})$ travelling?

$$
\mathrm{v}=
$$

\qquad
1-6. (3pts Extra Credit) Is the wave described by $D(x, t)$ travelling in the $+x$ or $-x$ direction?
A) $+x$
B) $-x$

Name (last name only) \qquad Section Number \qquad
Problem 2 (25 points): A large box of mass 80 kg lies on a frictionless inclined plane at an angle of 25°. Two movers attach a rope to the box so that they can pull on the box up the inclined plane (parallel to the surface of the plane).
a) (10 pts) Draw a diagram of the problem and draw a free body diagram for the block, showing all the Forces acting on the block. Don't forget to indicate your coordinate system.
b) (5 pts) What is the Normal Force acting on the box?

Name (last name only) \qquad Section Number \qquad
Problem 2 Cont.
c) (5 pts) If the box is initially at rest, with what combined Force do the movers need to pull on the box in order to keep it from sliding down the plane?
d) (5pts) The maximum combined force the movers can exert is 400 N . Give the equation of motion of the box, $x(t)$, if the movers are pulling with all of their might (assume box starts at rest).

Name (last name only) \qquad Section Number \qquad
Problem 3 (20 points): A mass (5 kg), released from rest, slides down a frictionless track of height $\mathrm{h}=10 \mathrm{~m}$ (from point A to pointB) onto a flat surface (from point B on) with a coefficient of friction of $\mu_{k}=0.15$. The mass comes to rest at point C.

A

a) $(5 \mathrm{pts})$ Give speed of the mass at point B.
b) (15pts) How far is point C from point B ? How much work is done by the Force of Friction on the mass over the entire length of the course?

Name (last name only) \qquad Section Number \qquad
Problem 4 (25 points): A simple harmonic oscillator consists of a 4 kg mass attached to a horizontal spring. The mass rests on a frictionless surface.
a) (10pts) The spring/mass system is compressed and released from rest. It is observed to oscillate with a period $\mathrm{T}=2 \mathrm{~s}$. What is the spring constant of the spring?
b) (5 pts) The spring/mass system is returned to equilibrium. It is then given an initial velocity of $+7 \mathrm{~m} / \mathrm{s}$ and allowed to oscillate back and forth. What is the amplitude of oscillation of the spring/mass system?

Name (last name only) \qquad

Problem 4 Cont.

c) (10pts) Give the position and velocity of the mass as a function of time $(\mathrm{x}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$), for the intial conditions of part(b). Hint: Check your answers with the initial conditions given in part (b).

Name (last name only) \qquad Section Number \qquad
Problem 5 (20 points): A uniform circular plate of radius 3 R has a hole of radius R cutout of it. The center of the hole is a distance 1.5 R from the center of the larger circle and lies on the y axis. What is the position of the center of mass of the plate? (Hint: try subtraction).

Name (last name only) \qquad
\qquad
Problem 6 (20 points): Principal Skinner (70 kg) wants to turn the container by 90° in 30 s . He decides to do so by running in a circular path of radius $\mathrm{R}_{\mathrm{s}}=1.25 \mathrm{~m}$ (with constant speed) on the top of the container. Assume the container has a moment of inertia of $40,000 \mathrm{~kg}-\mathrm{m}^{2}$ and is initially at rest before Skinner starts running.

a) (5 pts) What is the desired angular velocity (in $\mathrm{rad} / \mathrm{s}$) of the container?
b) (5pts) What is the moment of inertia of Principal Skinner, using the center of his circular path as the axis of rotation?

Name (last name only) \qquad Section Number

Problem 6, continued.
c) (10pts) Using the principle of conservation of angular momentum, determine how fast Principal Skinner must run (in m / s) to move the container, with a constant angular velocity, 90° in 30s.

Name (last name only) \qquad
\qquad
Problem 7 (35 points): The system below consists of a cylinder ($\mathrm{R}_{\mathrm{c}}=20 \mathrm{~cm}, \mathrm{M}_{\mathrm{c}}=60 \mathrm{~kg}$) and 4 point masses ($\mathrm{m}=3 \mathrm{~kg}$ each) attached to the outer edge of the cylinder by massless rods of length $\mathrm{L}=0.25 \mathrm{~m}$ each. The system is free to rotate about the axis through the center of the cylinder. The moment of inertia of a cylinder is given by: $I_{c y l .}=1 / 2 M R^{2}$.
(a) (10 pts) What is the moment of inertia of this system for rotation about the center of the cylinder? (Do not count M_{b} as part of the system)

(a) (10 pts) Assume an 8 kg mass $\left(\mathrm{M}_{\mathrm{b}}\right)$ is attached to a massless cord, wrapped around the cylinder, and dropped from rest. What is the acceleration of the mass $\left(\mathrm{M}_{\mathrm{b}}\right)$?

Name (last name only) \qquad Section Number

Problem 7, continued
(b) (5 pts) What is the angular acceleration of the rotating cylinder/4mass system?
(c) (10pts) Determine the Kinetic Energy, as a function of time, associated with the i) rotating system and ii) the falling mass.

Name (last name only) \qquad
\qquad
Problem 8 (30 points): A mass of 2 kg on an angled spring ($\mathrm{k}=800 \mathrm{~N} / \mathrm{m}$) compressed by certain distance d from equilibrium. The spring/mass system is in equilibrium when the mass is at ground level $(\mathrm{y}=0)$ and the angled surface is frictionless. The spring is released, and the mass is shot into the air with an initial speed $\mathrm{v}_{\mathrm{o}}=50 \mathrm{~m} / \mathrm{s}$.

a) (5pts) What is the initial velocity of the mass when it leaves the spring at $(0,0)$.

$$
\vec{v}_{o}=\ldots \hat{i}+\ldots \hat{j}
$$

b) (10pts) How far from the launch point $(0,0)$, is the mass at the peak of its trajectory (write in component form)?

$$
\vec{r}_{\text {peak }}=\ldots \hat{i}+\ldots \hat{j}
$$

Name (last name only) \qquad Section Number \qquad

Problem 8 Cont.

c) (10 pts) At the peak of its trajectory, a 30 g bullet, shot from directly below the mass embeds in the mass with a speed of $420 \mathrm{~m} / \mathrm{s}$. What is the velocity of the mass/bullet immediately following the collision?

$$
\vec{v}^{\prime}=\ldots \hat{i}+\ldots \hat{j}
$$

d) (5 pts) Give the initial compression (d) of the spring. Remember to take into account the gravitational potential energy of the mass.

95.141 Fall 2009 Final: Formula Sheet

- Trig

$$
\sin \theta=\frac{a}{c}, \quad \cos \theta=\frac{b}{c}
$$

$\tan \theta=\frac{a}{b}$
a
$c^{2}=a^{2}+b^{2}$

- Quadratic Formula
$a x^{2}+b x+c=0$ has solutions:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Misc. Formulas

Circumference of a circle : $2 \pi r$
Area of a Circle : πr^{2}
Surface Area of a Sphere : $4 \pi r^{2}$
Volume of a Sphere: $\frac{4}{3} \pi r^{3}$
Volume of a Cylinder: $\mathrm{h} \pi \mathrm{r}^{2}$

- Derivatives
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}(n \neq 0)$
$\frac{d}{d x}(\cos a x)=-a \sin a x$ (ax in radians)
$\frac{d}{d x}(\sin a x)=a \cos a x$ (ax in radians)
$\frac{d}{d x}(\ln x)=\frac{1}{x} \quad, \quad \frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
Chain Rule : $\frac{d}{d x}(f(g(x)))=\frac{d f(g)}{d g} \frac{d g(x)}{d x}$
Distributive Rule : $\frac{d}{d x}(f(x)+g(x))=\frac{d f(x)}{d x}+\frac{d g(x)}{d x}$
- Integrals

$$
\begin{aligned}
& \quad \begin{array}{l}
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \\
\int e^{a x} d x=\frac{1}{a} e^{a x}+C \\
\int \frac{d x}{x}=\ln x+C \\
\int \sin x d x=-\cos x+C \\
\int \cos x d x=\sin x+C
\end{array} \text { Conversions }
\end{aligned}
$$

$$
\begin{array}{ll}
1 \text { liter }=1 \times 10^{-3} \mathrm{~m}^{3} & , \quad 1 \mathrm{ft}=0.3048 \mathrm{~m} \\
1 \mathrm{mile}=1609 \mathrm{~m} & , \quad 1 \text { mile per hour }=0.447 \mathrm{~m} / \mathrm{s} \\
1 \mathrm{~mm}=0.001 \mathrm{~m} & , \quad 1 \mathrm{~g}=0.001 \mathrm{~kg}
\end{array}
$$

- Units

Velocity $\rightarrow \mathrm{dx} / \mathrm{dt}=\mathrm{m} / \mathrm{s}$
Acceleration $\rightarrow d^{d^{2} x} d t^{2}=m / s^{2}$
Force \rightarrow Newton $(N)=k \mathrm{~kg} / \mathrm{s}^{2}$
Momentum $\rightarrow \mathrm{kgm} / \mathrm{s}$
Torque $\rightarrow \mathrm{N}-\mathrm{m}$
Angular Momentum $\rightarrow \mathrm{kgm}^{2} / \mathrm{s}$
SI Units[mass, length, time] $=[\mathrm{kg}, \mathrm{m}, \mathrm{s}]$

- Constants

$$
\begin{aligned}
& G=6.67 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}^{2}} \\
& g=9.8 \frac{\mathrm{~m}}{s^{2}} \\
& \pi \approx 3.1416 \\
& e \approx 2.718
\end{aligned}
$$

RadiusEarth $=6.4 \times 10^{6} \mathrm{~m}$
MassEarth $=5.98 \times 10^{24} \mathrm{~kg}$

95.141 Fall 2009 Final: Formula Sheet

- One Dimensional Motion
displacement $=\Delta x$
average velocity $=\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}$ average acceleration $=\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$
$v(t)=\frac{d x(t)}{d t}($ instantaneous $)$
$a(t)=\frac{d v(t)}{d t}=\frac{d^{2} x(t)}{d t^{2}}$ (instantaneous)
- Motion with constant a
(one dimensional)
$x(t)=x_{o}+v_{x o} t+\frac{1}{2} a t^{2}$
$v(t)=v_{x o}+a t \quad, \quad a(t)=$ constant
$v^{2}=v_{x o}^{2}+2 a\left(x-x_{o}\right)$
- Projectile Motion

For motion over level ground :

$$
\text { Range }=\frac{v_{o}^{2} \sin \left(2 \theta_{o}\right)}{g}
$$

- X-Y Plane Motion (with constant acceleration)
$x(t)=x_{o}+v_{x o} t+1 / 2 a_{x} t^{2}$
$v_{x}(t)=v_{x o}+a_{x} t \quad, \quad a_{x}(t)=a_{x}($ constant $)$
$y(t)=y_{o}+v_{y o} t+1 / 2 a_{y} t^{2}$
$v_{y}(t)=v_{y o}+a_{y} t \quad, \quad a_{y}(t)=a_{y}($ constant $)$

- Circular Motion

$\omega=\frac{d \theta}{d t} \quad, \quad v_{\mathrm{tan}}=\omega R$
$T=\frac{1}{f}=\frac{2 \pi}{\omega} \quad, \quad \omega=2 \pi f$
$a_{\text {cenrriped }}=\frac{v^{2}}{R}=R \omega^{2}$

- Dot, Cross Product
$\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$
$\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$
$\vec{A} \bullet \vec{B}=\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right)=|A||B| \cos \theta$
$\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$
$=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}$
$=|A||B| \sin \theta$
- Frictional Forces
$F_{s-\max }=\mu_{s} F_{N} \quad, \quad F_{k}=\mu_{k} F_{N} \quad, \quad \mu_{s}>\mu_{k}$
- Work and Energy

Work Energy Theorem $\rightarrow \mathrm{W}_{\text {net }}=\Delta K E$
$K E=\frac{1}{2} m v^{2} \quad, \quad \Delta K E=K E_{2}-K E_{1}$
One Dimension, F constant: $\mathrm{W}=\mathrm{F} \Delta \mathrm{x}$
MoreGenerally : $\mathrm{W}=\int_{\bar{\Gamma}}^{\vec{F}} \overrightarrow{\mathrm{~F}} \bullet \mathrm{~d} \vec{r}$
Power: $P=\frac{d W}{d t}$ (Watts)
$1-\mathrm{D}: P=F v$

- Potential Energy
$U(x)=U_{o}\left(x_{o}\right)-\int_{x_{o}}^{x} F d x \quad, \quad F(x)=-\frac{d U(x)}{d x}$
Gravity of Earth's Surface : $\mathrm{U}(\mathrm{y})=\mathrm{U}_{\mathrm{o}}+\mathrm{mg} \Delta \mathrm{y}$
General Expression for Gravitational Potential:
$U(r)=-\frac{G M_{1} M_{2}}{r}$
For Springs : $U(x)=\frac{1}{2} k x^{2}$

95.141 Fall 2009 Final: Formula Sheet

- Conservative Energy Systems

$$
\left.E_{\text {tot }}=K+U \text { (constant }\right)
$$

- Center of Mass
$\vec{r}_{C M}=\frac{1}{M_{\text {total }}}\left[m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\ldots m_{n} \vec{r}_{n}\right]=\frac{\sum_{i} \vec{r}_{i} m_{i}}{\sum_{i} m_{i}}$
- Kepler's $3^{\text {rd }}$ Law, Force Grav.

$$
\begin{aligned}
& \left(\frac{T_{1}}{T_{2}}\right)^{2}=\left(\frac{R_{1}}{R_{2}}\right)^{3}, \frac{T^{2}}{R^{3}}=\frac{4 \pi^{2}}{G M} \\
& F_{\text {gravity }}=\frac{-G M_{1} M_{2}}{r^{2}}
\end{aligned}
$$

$$
\text { for 1D : } x_{c m}=\frac{1}{M_{\text {tootal }}}\left[m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\ldots m_{n} x_{n}\right] \begin{gathered}
\text { - Harmonic Motion } \\
F=-k x \quad, \quad U(x)=\frac{1}{2} k x^{2} \quad, \quad \omega=\sqrt{\frac{k}{m}}
\end{gathered}
$$

$$
\vec{F}_{\text {net }}=M_{\text {totat }} \vec{a}_{C M}
$$

- Momentum and Impulse
$x(t)=A \cos (\omega t+\phi)$
$\vec{p}=m \vec{v} \quad, \quad \vec{F}=\frac{d \vec{p}}{d t}$
Damped Harmonic Motion(damp.const.b)

$$
\begin{array}{ll}
x(t)=A e^{-x} \cos \left(\omega^{\prime} t+\phi\right) \\
\gamma=b / 2 m \quad, & \omega^{\prime}=\sqrt{k / m}-b^{2} / 4 m^{2}
\end{array}
$$

Forced Harmonic Motion (Forcing freq. ω)

$$
x(t)=A(\omega) \cos \left(\omega t+\phi_{o}\right) \quad, \quad \omega_{o}=\sqrt{k / m}
$$

$$
A(\omega)=\frac{F_{o}}{m \sqrt{\left(\omega^{2}-\omega_{o}^{2}\right)^{2}+b^{2} \omega^{2} / m^{2}}}
$$

- Pendulums $\omega=\sqrt{\frac{g}{\ell}}=\frac{2 \pi}{T}$
- Waves
$\lambda=$ wavelength, distance between crests (fixed t)
$\mathrm{T}=$ Period, time between crests (fixed x)
Equation for wave travelling in x direction :
$D(x, t)=A \sin (k x-\omega t)$ or $A \cos (k x-\omega t)$
Equation for wave travelling in -x direction :
$D(x, t)=A \sin (k x+\omega t)$ or $A \cos (k x+\omega t)$
$\lambda=\frac{2 \pi}{k}$
$v_{\text {wave }}=\lambda f \quad, \quad T=\frac{1}{f}=\frac{2 \pi}{\omega}$
For Strings with tension $\mathrm{T}: v=\sqrt{\frac{T}{\mu}}$

