95.141 Exam 2a, March 31, 2010

Section Number \qquad
Section Instructor \qquad

Name \qquad Last Name First Name

Last 3 Digits of Student ID number: \qquad
Answer all questions, beginning each new question in the space provided. Show all work. Show all formulas used for each problem prior to substitution of numbers. Label diagrams and include appropriate units for your answers! Write your name and section number at the top of each page in the space provided and write the name of your section instructor in the place provided on this cover sheet. You may use an alphanumeric calculator (one which exhibits physical formulas) during the exam, as long as you do not program any numbers to memory. By using an alphanumeric calculator you agree to allow us to check its memory during the exam. Simple scientific calculators are always OK.

Score on each problem:

\qquad
2. \qquad
3. \qquad
4. \qquad
Total Score (based on 100 pts)

Be prepared to show your student ID Card

Name (last name only) \qquad
\qquad
Problem 1 (25 points - 5 points each, no partial credit on this problem only, don't forget units if a fill-in answer)

1-1. Mass A (100kg) and Mass B(500kg) are placed on a table, separated by 10 cm . What is the Force of Gravity between the two masses?
A) $3.34 \times 10^{-5} \mathrm{~N}$
B) $3.34 \times 10^{-4} \mathrm{~N}$
C) $3.34 \times 10^{-8} \mathrm{~N}$
D) $3.34 \times 10^{-10} \mathrm{~N}$

1-2. Mercury orbits the Sun at a distance of $57.9 \times 10^{6} \mathrm{~km}$ and completes one orbit every 0.241 yrs. If Jupiter is $778.3 \times 10^{6} \mathrm{~km}$ from the Sun, what is the Period of Jupiter's orbit?
A) 6.43 yrs
B) 3.24 yrs
C) 141 yrs
D) 11.9 yrs

1-3. What is the change in the gravitational potential energy of a 4 kg block which falls off a 2 m high table onto the ground?

$$
\Delta U_{g}=
$$

1-4. Calculate the scalar (dot) product of the vectors $\vec{A}=8 \hat{j}+3 \hat{k}$ and $\vec{B}=3 \hat{i}+2 \hat{j}-4 \hat{k}$.

$$
\vec{A} \bullet \vec{B}=
$$

\qquad

1-5. A 1000 kg car accelerates from $10 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$. What is the net work done on the car?
$W=$

Name (last name only) \qquad Section Number \qquad
Problem 2 (25 points): A child ($\mathrm{m}=30 \mathrm{~kg}$) sits 5 m from the axis of rotation on a flat turntable which makes a full rotation every 8 seconds.
a) (6pts) Give the child's period (T) and frequency (f)

$$
T=_\quad f=
$$

b) (6pts) What is the tangential velocity of the child?

$$
\mathrm{v}_{\mathrm{T}}=
$$

Name (last name only) \qquad Section Number
c) (8pts) What is the centripetal acceleration of the child? What must the centripetal force acting on the child be?

$$
\mathrm{a}_{\mathrm{c}}=\ldots, \mathrm{F}_{\mathrm{c}}=
$$

d) (8pts) If this is the fastest the child can go without slipping off the turntable, determine the coefficient of static friction between the child and the table surface.

$$
\mu_{\mathrm{s}}=
$$

Name (last name only) \qquad
\qquad
Problem 3 (25 points): A block of mass $\mathrm{M}=3 \mathrm{~kg}$ sits on a surface with $\mu_{\mathrm{s}}=0.3$ and $\mu_{\mathrm{k}}=0.2$. A force is applied to the block as shown in the diagram, with $\theta=20^{\circ}$.

(a) (10 pts) Draw the free body diagram for this system, showing all Forces acting on the system and your coordinate system.
(b) (5 pts) If $\mathrm{F}_{\mathrm{a}}=20 \mathrm{~N}$, calculate the Normal Force acting on the mass.

$$
\vec{F}_{N}=
$$

\qquad

Name (last name only) \qquad Section Number \qquad
(c) (5 pts) If the applied force $\mathrm{F}_{\mathrm{a}}=20 \mathrm{~N}$, calculate the acceleration of the mass.

$$
a=
$$

\qquad
(d) (5 pts) If the mass moves 100 m , what is the work done by the Normal Force over this distance?
$\mathrm{W}_{\text {normal }}=$
\qquad
\qquad
Problem 4 (25 points): A mass $m(3 \mathrm{~kg})$ is released from rest at point A (at $\mathrm{h}=8 \mathrm{~m}$) on a frictionless inclined plane $\left(\theta=35^{\circ}\right)$. It slides down the plane and hits a spring (spring constant $\mathrm{k}=200 \mathrm{~N}-\mathrm{m}$) at point B . At point C , the spring is fully compressed, and the mass's speed is 0 .

a) (6 pts) What is the speed of the block at point B , right before it touches the spring?

$$
v_{B}=
$$

\qquad
b) (6 pts) There are 3 types of energy in this system. Give an expression for the energy of the system at i) point $\mathrm{B}(\mathrm{x}=0)$ and ii) at point $\mathrm{C}\left(\mathrm{x}=\mathrm{x}_{\max }\right)$. Give your answers in terms of $\mathrm{m}, \mathrm{v}, \mathrm{k}, \mathrm{g}, \theta$ and $\mathrm{x}_{\text {max }}$ (the maximum compression of the spring).

Name (last name only) \qquad Section Number \qquad
c) (8 pts) Use conservation of Energy to determine the maximum compression of the spring.

$$
\Delta x_{\max }=
$$

\qquad
d) (5pts) What is the work done by the spring from point B to C ?

