PROBLEM 7.31

Solve Probs. 7.5 and 7.9, using Mohr’s circle.

PROBLEM 7.5 through 7.8 For the given state of stress, determine (a) the principal planes, (b) the principal stresses.

PROBLEM 7.9 through 7.12 For the given state of stress, determine (a) the orientation of the planes of maximum in-plane shearing stress, (b) the maximum in-plane shearing stress, (c) the corresponding normal stress.

SOLUTION

\[\sigma_x = -60 \text{ MPa}, \]
\[\sigma_y = -40 \text{ MPa}, \]
\[\tau_{xy} = 35 \text{ MPa} \]
\[\sigma_{ave} = \frac{\sigma_x + \sigma_y}{2} = -50 \text{ MPa} \]

Plotted points for Mohr’s circle:

\[X: (\sigma_x, -\tau_{xy}) = (-60 \text{ MPa}, -35 \text{ MPa}) \]
\[Y: (\sigma_y, \tau_{xy}) = (-40 \text{ MPa}, 35 \text{ MPa}) \]
\[C: (\sigma_{ave}, 0) = (-50 \text{ MPa}, 0) \]

(a) \[\tan \beta = \frac{Gy}{CG} = \frac{35}{10} = 3.500 \]
\[\beta = 74.05^\circ \]
\[\theta_b = -\frac{1}{2} \beta = -37.03^\circ \]
\[\alpha = 180^\circ - \beta = 105.95^\circ \]
\[\theta_a = \frac{1}{2} \alpha = 52.97^\circ \]
\[R = \sqrt{CG^2 + GX^2} = \sqrt{10^2 + 35^2} = 36.4 \text{ MPa} \]

(b) \[\sigma_{min} = \sigma_{ave} - R = -50 - 36.4 \]
\[\sigma_{max} = \sigma_{ave} + R = -50 + 36.4 \]

(a') \[\theta_d = \beta + 45^\circ = 7.97^\circ \]
\[\theta_e = \alpha + 45^\circ = 97.97^\circ \]
\[\tau_{max} = R = 36.4 \text{ MPa} \]

(b') \[\sigma' = \sigma_{ave} = -50 \text{ MPa} \]

\[\theta_b = -37.0^\circ \]
\[\theta_a = 53.0^\circ \]
\[\sigma_{min} = -86.4 \text{ MPa} \]
\[\sigma_{max} = -13.6 \text{ MPa} \]
\[\theta_d = 8.0^\circ \]
\[\theta_e = 98.0^\circ \]
\[\tau_{max} = 36.4 \text{ MPa} \]
\[\sigma' = -50.0 \text{ MPa} \]
PROBLEM 7.35
Solve Prob. 7.13, using Mohr’s circle.

PROBLEM 7.13 through 7.16 For the given state of stress, determine the normal and shearing stresses after the element shown has been rotated through (a) 25° clockwise, (b) 10° counterclockwise.

SOLUTION

\[\sigma_x = 0, \]
\[\sigma_y = 8 \text{ ksi}, \]
\[\tau_{xy} = 5 \text{ ksi} \]
\[\sigma_{\text{ave}} = \frac{\sigma_x + \sigma_y}{2} = 4 \text{ ksi} \]

Plotted points for Mohr’s circle:

\[X: (0, -5 \text{ ksi}) \]
\[Y: (8 \text{ ksi}, 5 \text{ ksi}) \]
\[C: (4 \text{ ksi}, 0) \]
\[\tan 2\theta_p = \frac{FX}{FC} = \frac{5}{4} = 1.25 \]
\[2\theta_p = 51.34^\circ \]
\[R = \sqrt{FC^2 + FX^2} = \sqrt{4^2 + 5^2} = 6.40 \text{ ksi} \]

(a) \[\theta = 25^\circ \] \[2\theta = 50^\circ \]
\[\varphi = 51.34^\circ - 50^\circ = 1.34^\circ \]
\[\sigma_x' = \sigma_{\text{ave}} - R \cos \varphi \quad \sigma_x' = -2.40 \text{ ksi} \]
\[\tau_{x'y'} = R \sin \varphi \quad \tau_{x'y'} = 0.15 \text{ ksi} \]
\[\sigma_y' = \sigma_{\text{ave}} + R \cos \varphi \quad \sigma_y' = 10.40 \text{ ksi} \]

(b) \[\theta = 10^\circ \] \[2\theta = 20^\circ \]
\[\varphi = 51.34^\circ + 20^\circ = 71.34^\circ \]
\[\sigma_x' = \sigma_{\text{ave}} - R \cos \varphi \quad \sigma_x' = 1.95 \text{ ksi} \]
\[\tau_{x'y'} = R \sin \varphi \quad \tau_{x'y'} = 6.07 \text{ ksi} \]
\[\sigma_y' = \sigma_{\text{ave}} + R \cos \varphi \quad \sigma_y' = 6.05 \text{ ksi} \]
PROBLEM 7.39

Solve Prob. 7.17, using Mohr’s circle.

PROBLEM 7.17 The grain of a wooden member forms an angle of 15° with the vertical. For the state of stress shown, determine (a) the in-plane shearing stress parallel to the grain, (b) the normal stress perpendicular to the grain.

SOLUTION

\[\sigma_x = -4 \text{ MPa} \quad \sigma_y = -1.6 \text{ MPa} \quad \tau_{xy} = 0 \]
\[\sigma_{\text{ave}} = \frac{\sigma_x + \sigma_y}{2} = -2.8 \text{ MPa} \]

Plotted points for Mohr’s circle:

- X: \((\sigma_x, -\tau_{xy}) = (-4 \text{ MPa}, 0)\)
- Y: \((\sigma_y, \tau_{xy}) = (-1.6 \text{ MPa}, 0)\)
- C: \((\sigma_{\text{ave}}, 0) = (-2.8 \text{ MPa}, 0)\)

\[\theta = -15^\circ \quad 2\theta = -30^\circ \]
\[CX = 1.2 \text{ MPa} \quad R = 1.2 \text{ MPa} \]

(a) \[\tau_{xy}' = -CX \sin 30^\circ = -R \sin 30^\circ = -1.2 \sin 30^\circ \]
\[\tau_{xy}' = -0.600 \text{ MPa} \]

(b) \[\sigma_x' = \sigma_{\text{ave}} - CX \cos 30^\circ = -2.8 - 1.2 \cos 30^\circ \]
\[\sigma_x' = -3.84 \text{ MPa} \]
PROBLEM 7.44
Solve Prob. 7.22, using Mohr’s circle.

PROBLEM 7.22 Two steel plates of uniform cross section 10 × 80 mm are welded together as shown. Knowing that centric 100-kN forces are applied to the welded plates and that the in-plane shearing stress parallel to the weld is 30 MPa, determine (a) the angle β, (b) the corresponding normal stress perpendicular to the weld.

SOLUTION

\[\sigma_x = \frac{P}{A} = \frac{100 \times 10^3}{(10 \times 10^{-3})(80 \times 10^{-3})} = 125 \times 10^6 \text{ Pa} = 125 \text{ MPa} \]

\[\sigma_y = 0 \quad \tau_{xy} = 0 \]

From Mohr’s circle:

(a) \[\sin 2\beta = \frac{30}{62.5} = 0.48 \]
\[\beta = 14.3^\circ \]

(b) \[\sigma = 62.5 + 62.5 \cos 2\beta \]
\[\sigma = 117.3 \text{ MPa} \]
PROBLEM 7.98
A spherical gas container made of steel has a 5-m outer diameter and a wall thickness of 6 mm. Knowing that the internal pressure is 350 kPa, determine the maximum normal stress and the maximum shearing stress in the container.

SOLUTION

\[d = 5 \text{ m} \quad t = 6 \text{ mm} = 0.006 \text{ m}, \quad r = \frac{d}{2} - t = 2.494 \text{ m} \]

\[\sigma = \frac{pr}{2t} = \frac{(350 \times 10^3 \text{ Pa})(2.494 \text{ m})}{2(0.006 \text{ m})} = 72.742 \times 10^6 \text{ Pa} \]

\[\sigma = 72.7 \text{ MPa} \]

\[\sigma_{\text{max}} = 72.742 \text{ MPa} \]

\[\sigma_{\text{min}} = 0 \quad \text{(Neglecting small radial stress)} \]

\[\tau_{\text{max}} = \frac{1}{2}(\sigma_{\text{max}} - \sigma_{\text{min}}) \]

\[\tau_{\text{max}} = 36.4 \text{ MPa} \]
PROBLEM 7.109

The unpressurized cylindrical storage tank shown has a $\frac{3}{16}$-in. wall thickness and is made of steel having a 60-ksi ultimate strength in tension. Determine the maximum height h to which it can be filled with water if a factor of safety of 4.0 is desired. (Specific weight of water = 62.4 lb/ft3.)

SOLUTION

$$d_0 = (25)(12) = 300 \text{ in.}$$
$$r = \frac{1}{2}d - t = 150 - \frac{3}{16} = 149.81 \text{ in.}$$
$$\sigma_{all} = \frac{\sigma_U}{F.S.} = \frac{60 \text{ ksi}}{4.0} = 15 \text{ ksi} = 15 \times 10^3 \text{ psi}$$
$$\sigma_{all} = \frac{pr}{t}$$
$$p = \frac{t\sigma_{all}}{r} = \frac{(\frac{1}{16})(15 \times 10^3)}{149.81} = 18.77 \text{ psi} = 2703 \text{ lb/ft}^2$$

But $p = \gamma h$,

$$h = \frac{p}{\gamma} = \frac{2703 \text{ lb/ft}^2}{62.4 \text{ lb/ft}^3} \quad h = 43.3 \text{ ft}$$