PROBLEM 2.1

A nylon thread is subjected to a 8.5-N tension force. Knowing that $E = 3.3 \text{ GPa}$ and that the length of the thread increases by 1.1%, determine (a) the diameter of the thread, (b) the stress in the thread.

SOLUTION

(a) Strain: \[\varepsilon = \frac{\delta}{L} = \frac{1.1}{100} = 0.011 \]

Stress: \[\sigma = E \varepsilon = (3.3 \times 10^9)(0.011) = 36.3 \times 10^6 \text{ Pa} \]

\[\sigma = \frac{P}{A} \]

Area: \[A = \frac{P}{\sigma} = \frac{8.5}{36.3 \times 10^6} = 234.16 \times 10^{-9} \text{ m}^2 \]

Diameter: \[d = \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{(4)(234.16 \times 10^{-9})}{\pi}} = 546 \times 10^{-6} \text{ m} \quad d = 0.546 \text{ mm} \]

(b) Stress: \[\sigma = 36.3 \text{ MPa} \]
PROBLEM 2.17

The specimen shown has been cut from a $\frac{1}{4}$-in.-thick sheet of vinyl ($E = 0.45 \times 10^6$ psi) and is subjected to a 350-lb tensile load. Determine (*a*) the total deformation of the specimen, (*b*) the deformation of its central portion BC.

SOLUTION

\[
\delta_{AB} = \frac{PL_{AB}}{EA_{AB}} = \frac{(350 \text{ lb})(1.6 \text{ in.})}{(0.45 \times 10^6 \text{ psi})(1 \text{ in.})(0.25 \text{ in.})} = 4.9778 \times 10^{-3} \text{ in.}
\]

\[
\delta_{BC} = \frac{PL_{BC}}{EA_{BC}} = \frac{(350 \text{ lb})(2 \text{ in.})}{(0.45 \times 10^6 \text{ psi})(0.4 \text{ in.})(0.25 \text{ in.})} = 15.556 \times 10^{-3} \text{ in.}
\]

\[
\delta_{CD} = \delta_{AB} = 4.9778 \times 10^{-3} \text{ in.}
\]

(*a*) Total deformation:

\[
\delta = \delta_{AB} + \delta_{BC} + \delta_{CD}
\]

\[
\delta = 25.511 \times 10^{-3} \text{ in.}
\]

\[
\delta = 25.5 \times 10^{-3} \text{ in.} \blacktriangleleft
\]

(*b*) Deformation of portion BC:

\[
\delta_{BC} = 15.56 \times 10^{-3} \text{ in.} \blacktriangleleft
\]
PROBLEM 2.35

The 4.5-ft concrete post is reinforced with six steel bars, each with a $1 \frac{1}{8}$-in. diameter. Knowing that $E_s = 29 \times 10^6$ psi and $E_c = 4.2 \times 10^6$ psi, determine the normal stresses in the steel and in the concrete when a 350-kip axial centric force P is applied to the post.

SOLUTION

Let P_c = portion of axial force carried by concrete.

P_s = portion carried by the six steel rods.

$$
\delta = \frac{P_c L}{E_c A_c} \quad P_c = \frac{E_c A_c \delta}{L}
$$

$$
\delta = \frac{P_s L}{E_s A_s} \quad P_s = \frac{E_s A_s \delta}{L}
$$

$$
P = P_c + P_s = \left(\frac{E_c A_c + E_s A_s}{E_c A_c + E_s A_s}\right) \delta
$$

$$
\varepsilon = \frac{\delta}{L} = \frac{-P}{E_c A_c + E_s A_s}
$$

$$
A_s = 6\frac{\pi}{4}d_s^2 = \frac{6\pi}{4}(1.125 \text{ in.})^2 = 5.9641 \text{ in}^2
$$

$$
A_c = \frac{\pi}{4}d_c^2 - A_s = \frac{\pi}{4}(18 \text{ in.})^2 - 5.9641 \text{ in}^2
$$

= 248.51 \text{ in}^2

$L = 4.5 \text{ ft} = 54 \text{ in.}$

$$
\varepsilon = \frac{-350 \times 10^3 \text{ lb}}{(4.2 \times 10^6 \text{ psi})(248.51 \text{ in}^2) + (29 \times 10^6 \text{ psi})(5.9641 \text{ in}^2)} = -2.8767 \times 10^{-4}
$$

$$
\sigma_s = E_s \varepsilon = (29 \times 10^6 \text{ psi})(-2.8767 \times 10^{-4}) = -8.3424 \times 10^3 \text{ psi} \quad \sigma_s = -8.34 \text{ ksi} \uparrow
$$

$$
\sigma_c = E_c \varepsilon = (4.2 \times 10^6 \text{ psi})(-2.8767 \times 10^{-4}) = 1.20821 \times 10^3 \text{ psi} \quad \sigma_c = -1.208 \text{ ksi} \uparrow
$$
PROBLEM 2.41

Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that $E_s = 200 \text{ GPa}$ and $E_b = 105 \text{ GPa}$, determine (a) the reactions at A and E, (b) the deflection of point C.

SOLUTION

A to C: $E = 200 \times 10^9 \text{ Pa}$

$A = \frac{\pi}{4} (40)^2 = 1.25664 \times 10^3 \text{ mm}^2 = 1.25664 \times 10^{-3} \text{ m}^2$

$EA = 251.327 \times 10^6 \text{ N}$

C to E: $E = 105 \times 10^9 \text{ Pa}$

$A = \frac{\pi}{4} (30)^2 = 706.86 \text{ mm}^2 = 706.86 \times 10^{-6} \text{ m}^2$

$EA = 74.220 \times 10^6 \text{ N}$

A to B: $P = R_A$

$L = 180 \text{ mm} = 0.180 \text{ m}$

$\delta_{AB} = \frac{PL}{EA} = \frac{R_A (0.180)}{251.327 \times 10^6}$

$= 716.20 \times 10^{-12} R_A$

B to C: $P = R_A - 60 \times 10^3$

$L = 120 \text{ mm} = 0.120 \text{ m}$

$\delta_{BC} = \frac{PL}{EA} = \frac{(R_A - 60 \times 10^3)(0.120)}{251.327 \times 10^6}$

$= 447.47 \times 10^{-12} R_A - 26.848 \times 10^{-6}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.
PROBLEM 2.41 (Continued)

C to D: \[P = R_A - 60 \times 10^3 \]
\[L = 100 \text{ mm} = 0.100 \text{ m} \]
\[\delta_{BC} = \frac{PL}{EA} = \frac{(R_A - 60 \times 10^3)(0.100)}{74.220 \times 10^6} \]
\[= 1.34735 \times 10^{-9} R_A - 80.841 \times 10^{-6} \]

D to E: \[P = R_A - 100 \times 10^3 \]
\[L = 100 \text{ mm} = 0.100 \text{ m} \]
\[\delta_{DE} = \frac{PL}{EA} = \frac{(R_A - 100 \times 10^3)(0.100)}{74.220 \times 10^6} \]
\[= 1.34735 \times 10^{-9} R_A - 134.735 \times 10^{-6} \]

A to E: \[\delta_{AE} = \delta_{AB} + \delta_{BC} + \delta_{CD} + \delta_{DE} \]
\[= 3.85837 \times 10^{-9} R_A - 242.424 \times 10^{-6} \]

Since point E cannot move relative to A, \[\delta_{AE} = 0 \]

(a) \[3.85837 \times 10^{-9} R_A - 242.424 \times 10^{-6} = 0 \]
\[R_A = 62.831 \times 10^3 \text{ N} \]
\[R_E = R_A - 100 \times 10^3 = 62.8 \times 10^3 - 100 \times 10^3 = -37.2 \times 10^3 \text{ N} \]

(b) \[\delta_C = \delta_{AB} + \delta_{BC} = 1.16367 \times 10^{-9} R_A - 26.848 \times 10^{-6} \]
\[= (1.16367 \times 10^{-9})(62.831 \times 10^3) - 26.848 \times 10^{-6} \]
\[= 46.3 \times 10^{-6} \text{ m} \]
\[\delta_C = 46.3 \mu\text{m} \]
PROBLEM 2.51

A rod consisting of two cylindrical portions \(AB \) and \(BC \) is restrained at both ends. Portion \(AB \) is made of steel \((E_s = 200 \text{ GPa}, \alpha_s = 11.7 \times 10^{-6}/^\circ\text{C}) \) and portion \(BC \) is made of brass \((E_b = 105 \text{ GPa}, \alpha_b = 20.9 \times 10^{-6}/^\circ\text{C}) \). Knowing that the rod is initially unstressed, determine the compressive force induced in \(ABC \) when there is a temperature rise of \(50^\circ\text{C} \).

SOLUTION

\[
A_{AB} = \frac{\pi}{4} d_{AB}^2 = \frac{\pi}{4} (30)^2 = 706.86 \text{ mm}^2 = 706.86 \times 10^{-6} \text{m}^2
\]
\[
A_{BC} = \frac{\pi}{4} d_{BC}^2 = \frac{\pi}{4} (50)^2 = 1.9635 \times 10^3 \text{ mm}^2 = 1.9635 \times 10^{-3} \text{m}^2
\]

Free thermal expansion:
\[
\delta_T = L_{AB} \alpha_s (\Delta T) + L_{BC} \alpha_b (\Delta T)
\]
\[
= (0.250)(11.7 \times 10^{-6})(50) + (0.300)(20.9 \times 10^{-6})(50)
\]
\[
= 459.75 \times 10^{-6} \text{m}
\]

Shortening due to induced compressive force \(P \):
\[
\delta_P = \frac{PL}{E_s A_{AB}} + \frac{PL}{E_b A_{BC}}
\]
\[
= \frac{0.250P}{(200 \times 10^9)(706.86 \times 10^{-6})} + \frac{0.300P}{(105 \times 10^9)(1.9635 \times 10^{-3})}
\]
\[
= 3.2235 \times 10^{-9} P
\]

For zero net deflection, \(\delta_P = \delta_T \)
\[
3.2235 \times 10^{-9} P = 459.75 \times 10^{-6}
\]
\[
P = 142.624 \times 10^3 \text{ N}
\]
\[
P = 142.6 \text{ kN}
\]