Effective Stress Concept

No Seepage

Total Stress (σ) at Point A

$$\sigma = H \gamma_w + (H_A - H) \gamma_{sat}$$

Where:

$\gamma_w = \text{Unit Weight of Water}$

$\gamma_{sat} = \text{Saturated Unit Weight of Soil}$

$H = \text{Height of water above Soil}$

$H_A = \text{Depth of Point A below water table}$

Saturated Soil Column (Figure 6.1. Das FGE (2005))
Effective Stress Concept

No Seepage

Total Stress (σ) can be divided into 2 Parts:

1. Portion carried by water in void spaces. **THIS IS THE PORE PRESSURE (u).**

2. Portion carried by soil solids at points of contact. **THIS IS THE EFFECTIVE STRESS (σ').**
Effective Stress Concept

No Seepage

Saturated Soil Column (Figure 6.1. Das FGE (2005))

 Forces acting at Soil Particle Points of Contact at level of Point A (i.e. along Line a-a)

Figure 6.1. Das FGE (2005)

Effective Stress (σ') along Line a-a

$$\sigma' = \frac{P_1(v) + P_2(v) + P_3(v) + \ldots + P_n(v)}{A}$$
Effective Stress Concept

No Seepage

Effective Stress (σ')
along Line $a-a$

$$\sigma' = \frac{P_1(v) + P_2(v) + P_3(v) + \ldots + P_n(v)}{\bar{A}}$$

Where:

- $P_1(v) = \text{Vertical Component of } P_1$
- $\bar{A} = \text{Cross-sectional Area of Soil Mass Under Consideration}$

Forces acting at Soil Particle Points of Contact at level of Point A (i.e. along Line $a-a$)

Figure 6.1. Das FGE (2005)
Effective Stress Concept

No Seepage

Total Stress (σ) along Line a-a

$$\sigma = \sigma' + \frac{u(\bar{A} - a_s)}{A} = \sigma' + u(1 - a'_s)$$

Where:

- $a_s = \text{Cross-section Area of Soil Contacts} = a_1 + a_2 + a_3 + \ldots + a_n$
- $\bar{A} = \text{Cross-sectional Area of Soil Mass Under Consideration}$
- $a'_s = a_s/\bar{A} = \text{Fraction of unit cross-sectional area of soil mass occupied by solid to solid contacts.}$

Forces acting at Soil Particle Points of Contact at level of Point A (i.e. along Line a-a)

Figure 6.1. Das FGE (2005).
Effective Stress Concept

No Seepage

Total Stress (σ) along Line $a-a$

$$\sigma = \sigma' + u\left(\frac{A - a_s}{A}\right) = \sigma' + u(1 - a'_s)$$

$a'_s \approx 0$ (i.e. very small), so therefore:

$$= \sigma' + u \quad \text{or} \quad \sigma' = \sigma - u$$

THE EFFECTIVE STRESS EQUATION

Figure 6.1. Das FGE (2005)
Effective Stress Concept

No Seepage

The Effective Stress Equation

\[\sigma' = \sigma - u \]

\[\sigma' = \left[H \gamma_w + (H_A - H) \gamma_{sat} \right] - H_A \gamma_w \]

- **\(\sigma \)** = Total Stress
- **\(u \)** = Pore Pressure
- **\(\gamma \)** = Submerged unit weight of soil
- **\(\gamma_w \)** = Water unit weight
- **\(\gamma_{sat} \)** = Saturated unit weight
- **\(H_A \)** = Height of soil column
- **\(A \)** = Cross-sectional area

Figure 6.1. Das FGE (2005)
Effective Stress Concept

No Seepage: Example Problem

Given Soil Profile (NTS):

- **CL**
 - \(\gamma = 102 \text{ lb/ft}^3 \)
 - \(\gamma_{sat} = 105 \text{ lb/ft}^3 \)

- **SM**
 - \(\gamma_{sat} = 115 \text{ lb/ft}^3 \)

Find:

- Total and Effective Stresses at Pts. A, B, C, & D.
14.330 SOIL MECHANICS
Effective Stress

Effective Stress Concept

NO SEEPAGE: EXAMPLE PROBLEM

Given Soil Profile (NTS):

- **CL**
 - \(\gamma = 102 \text{ lb/ft}^3 \)
 - \(\gamma_{sat} = 105 \text{ lb/ft}^3 \)

- **SM**
 - \(\gamma_{sat} = 115 \text{ lb/ft}^3 \)

Find:

Total and Effective Stresses at Pts. A, B, C, & D.

@ Point A:

\[
\sigma_A = \gamma_{CL} \times Z_A = 102 \frac{lb}{ft^3} (5 \text{ ft})
\]

\[
\sigma_A = 510 \frac{lb}{ft^2}
\]

\[
\sigma'_A = \sigma_A - u_A
\]

\(u_A = 0 \)

\[
\therefore \sigma'_A = \sigma_A = 510 \frac{lb}{ft^2}
\]
Effective Stress Concept

No Seepage: Example Problem

GIVEN SOIL PROFILE (NTS):

CL
\(\gamma = 102 \text{ lb/ft}^3 \)
\(\gamma_{\text{sat}} = 105 \text{ lb/ft}^3 \)

SM
\(\gamma_{\text{sat}} = 115 \text{ lb/ft}^3 \)

@ Point B:

\[\sigma_B = \sigma_A + (\gamma_{\text{sat}} \cdot CL \times 4 \text{ ft}) \]

\[\sigma_B = 510 \frac{\text{lb}}{\text{ft}^3} + 105 \frac{\text{lb}}{\text{ft}^3} (4 \text{ ft}) \]

\[\sigma_B = 930 \frac{\text{lb}}{\text{ft}^2} \]

\[\sigma'_B = \sigma_B - u_B \]

\[u_B = \gamma_w \times 4 \text{ ft} = 62.4 \frac{\text{lb}}{\text{ft}^3} \times 4 \text{ ft} = 250 \frac{\text{lb}}{\text{ft}^2} \]

\[\sigma'_B = \sigma_B - u_B = 930 \frac{\text{lb}}{\text{ft}^2} - 250 \frac{\text{lb}}{\text{ft}^2} \]

\[\sigma'_B = 680 \frac{\text{lb}}{\text{ft}^2} \]
14.330 SOIL MECHANICS
Effective Stress

Effective Stress Concept

No Seepage: Example Problem

GIVEN SOIL PROFILE (NTS):

- **CL**
 - $\gamma = 102 \text{ lb/ft}^3$
 - $\gamma_{sat} = 105 \text{ lb/ft}^3$

- **SM**
 - $\gamma_{sat} = 115 \text{ lb/ft}^3$

@ Point C:

\[\sigma_C = \sigma_B + (\gamma_{sat,SM} \times 6 \text{ ft}) \]
\[\sigma_C = \frac{930}{\text{lb/ft}^3} + \frac{115}{\text{lb/ft}^3} \times 6 \text{ ft} \]
\[\sigma_C = 1620 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma'_C = \sigma_C - u_C \]
\[u_C = \gamma_w \times 10 \text{ ft} = 62.4 \frac{\text{lb}}{\text{ft}^3} \times 10 \text{ ft} = 624 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma'_C = \sigma_C - u_C = 1620 \frac{\text{lb}}{\text{ft}^2} - 624 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma'_C = 996 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma'_C = 1000 \frac{\text{lb}}{\text{ft}^2} \text{ (round to nearest 5 psf)} \]
Effective Stress Concept

No Seepage: Example Problem

@ Point D:

\[\sigma_D = \sigma_B + (\gamma_{\text{sat,SM}} \times 12 \text{ ft}) \]
\[\sigma_D = 930 \frac{\text{lb}}{\text{ft}^3} + 115 \frac{\text{lb}}{\text{ft}^3} (12 \text{ ft}) \]
\[\sigma_D = 2310 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma_D' = \sigma_D - u_D \]
\[u_D = \gamma_w \times 16 \text{ ft} = 62.4 \frac{\text{lb}}{\text{ft}^3} \times 16 \text{ ft} = 998 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma_D' = \sigma_D - u_D = 2310 \frac{\text{lb}}{\text{ft}^2} - 998 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma_D' = 1312 \frac{\text{lb}}{\text{ft}^2} \]
\[\sigma_D' = 1310 \frac{\text{lb}}{\text{ft}^2} \] (round to nearest 5 psf)
Effective Stress Concept

No Seepage: Example Problem

Total Stress (σ)

Depth from Existing Ground Surface (ft)

Pore Pressure (u)

Effective Stress (σ')

Depth from Existing Ground Surface (ft)

CL

$\gamma = 102$ pcf
$\gamma_{sat} = 105$ pcf

SM

$\gamma_{sat} = 115$ pcf

$\gamma = 102$ pcf

Use 1310

Use 1000
Stresses @ Point A:
\[\sigma_A = H_1 \gamma_w \]
\[u_A = H_1 \gamma_w \]
\[\sigma'_A = \sigma_A - u_A = 0 \]

Stresses @ Point B:
\[\sigma_B = H_1 \gamma_w + H_2 \gamma_{sat} \]
\[u_B = (H_1 + H_2 + h) \gamma_w \]
\[\sigma'_B = \sigma_B - u_B \]
\[\sigma'_B = (H_1 \gamma_w + H_2 \gamma_{sat}) - (H_1 + H_2 + h) \gamma_w \]
\[\sigma'_B = H_2 (\gamma_{sat} - \gamma_w) - h \gamma_w \]
\[\sigma'_B = H_2 \gamma' - h \gamma_w \]
Effective Stress Concept

Upward Seepage

Stresses @ Point C:

\[\sigma_C = H_1 \gamma_w + z \gamma_{sat} \]
\[u_C = (H_1 + z + \frac{h}{H_2} z) \gamma_w \]
\[\sigma'_C = \sigma_C - u_C \]
\[\sigma'_C = z(\gamma_{sat} - \gamma_w) - \frac{h}{H_2} z \gamma_w \]
\[\sigma'_C = z \gamma' - \frac{h}{H_2} z \gamma_w \]

NOTE: \[i = \frac{h}{H_2} = \frac{\text{Change in Head}}{\text{Length of Water Flow}} \]

\[\therefore \sigma'_C = z \gamma' - iz \gamma_w \]
Effective Stress Concept

Upward Seepage

Critical hydraulic gradient (i_{cr})

$$\sigma'_C = z \gamma' - i_{cr} z \gamma_w = 0$$

No effective stress!

Known as Boiling or Quick Condition

$$i_{cr} = \frac{\gamma'}{\gamma_w}$$

For Most Soils:

i_{cr} ranges from 0.9 to 1.1, with an average of 1

Figure 6.3a. Das FGE (2005).
Effective Stress Concept

Upward Seepage

Total stress, σ

Pore water pressure, u

Effective stress, σ'

$H_1\gamma_w$

$H_1\gamma_w + z\gamma_{sat}$

$(H_1 + z + iz)\gamma_w$

$z\gamma' - iz\gamma_w$

$H_1\gamma_w$

$H_2\gamma_{sat}$

$(H_1 + H_2 + h)\gamma_w$

$H_2\gamma' - h\gamma_w$

Figure 6.3b. Das FGE (2005).
Effective Stress Concept

Downward Seepage

Stresses @ Point A:
\[\sigma_A = H_1 \gamma_w \]
\[\sigma'_A = \sigma_A - u_A = 0 \]
\[u_A = H_1 \gamma_w \]

Stresses @ Point B:
\[\sigma_B = H_1 \gamma_w + H_2 \gamma_{sat} \]
\[u_B = (H_1 + H_2 - h) \gamma_w \]
\[\sigma'_B = \sigma_B - u_B \]
\[\sigma'_B = (H_1 \gamma_w + H_2 \gamma_{sat}) - (H_1 + H_2 - h) \gamma_w \]
\[\sigma'_B = H_2 (\gamma_{sat} - \gamma_w) + h \gamma_w \]
\[\sigma'_B = H_2 \gamma' + h \gamma_w \]

Figure 6.4a. Das FGE (2005).
Effective Stress Concept

Downward Seepage

Stresses @ Point C:

\[\sigma'_C = \sigma_C - u_C \]

\[\sigma'_C = H_1 \gamma_w + z \gamma_{sat} - \left(H_1 + z - \frac{h}{H_2} z \right) \gamma_w \]

\[\sigma'_C = z \gamma' + \frac{h}{H_2} z \gamma_w \]

NOTE: \(i = \frac{h}{H_2} = \frac{\text{Change in Head}}{\text{Length of Water Flow}} \)

\[\therefore \sigma'_C = z \gamma' + i z \gamma_w \]

Figure 6.4a. Das FGE (2005).
Effective Stress Concept

Downward Seepage

Figure 6.4b. Das FGE (2005).
Effective Stress Concept

Partially Saturated Soil

\[\sigma' = \sigma - u_a + \chi (u_a - u_w) \]

Where:
- \(u_a \) = Pore Air Pressure
- \(u_w \) = Pore Water Pressure
- \(\chi \) = Fraction of unit cross-sectional area of soil occupied by water.
 - \(\chi = 0 \) for dry soil; 1 for saturated soil.
- \(\chi \) depends on degree of saturation (S).
 - Also influenced by soil structure.

Figure 6.6. Das FGE (2005).
Capillary Rise in Soils

Summing Forces in Vertical Direction

\[
\left(\frac{\pi}{4}d^2 \right)h_c \gamma_w = \pi d T \cos \alpha
\]

\[
h_c = \frac{4T \cos \alpha}{d \gamma_w}
\]

Where:
- \(T \) = Surface Tension
- \(\alpha \) = Angle of Contact
- \(d \) = Capillary Tube Diameter

\(T, \alpha, \gamma_w \) remain constant

\[
h_c \propto \frac{1}{d}
\]

Figure 8.19. Principles of Geotechnical Engineering, Das (2006).
Capillary Rise in Soils

\[h_c \propto \frac{1}{d} \]

Figure 8.20. Principles of Geotechnical Engineering, Das (2006).
14.330 SOIL MECHANICS
Effective Stress

CAPILLARY RISE IN SOILS

Hazen (1930)

\[h_1 = \frac{C}{eD_{10}} \]

Where:
- \(D_{10} \) = Effective Size (mm)
- \(e \) = Void Ratio
- \(C \) = Constant (ranging from 10 mm\(^2\) to 50 mm\(^2\))

(a) Sandy soil (b) Water
Capillary Rise in Soils

Table 8.2 (Das, PGE 2006). Approximate Range of Capillary Rise in Soils.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Range of Capillary Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Coarse Sand</td>
<td>0.1 – 0.2</td>
</tr>
<tr>
<td>Fine Sand</td>
<td>0.3 – 1.2</td>
</tr>
<tr>
<td>Silt</td>
<td>0.75 – 7.5</td>
</tr>
<tr>
<td>Clay</td>
<td>7.5 - 23</td>
</tr>
</tbody>
</table>

Effective Stress in Capillary Zone

\[\sigma' = \sigma - u \]

Saturated: \[u = -h \gamma w \]

Partially Saturated: \[u = -h \left(\frac{S}{100} \right) \gamma w \]
Effective Stress

WITH NO SEEPAGE
(i.e. STATIC CONDITIONS)

\[
\sigma' = (H_A - H)(\gamma_{sat} - \gamma_w)
\]

\[
(\gamma_{sat} - \gamma_w) = \gamma'
\]

Height of soil column = \(z\)

\(\gamma' = \) Submerged unit weight of soil

Effective Stress:

\[\sigma' = z\gamma'\]

Effective Force:

\[P_1' = z\gamma' A\]

Where:

\(A = \) Area

Figure 6.1. Das FGE (2005).
SEEPAGE FORCE: UPWARD SEEPAGE

Effective Stress

\[\sigma' = z \gamma' \]

Effective Force

\[P'_1 = z \gamma' A \]

No Seepage:

\[\sigma' = z \gamma' \quad P'_1 = z \gamma' A \]

With Seepage:

\[\sigma' = z \gamma' - iz \gamma_w \quad P'_2 = (z \gamma' - iz \gamma_w) A \]

Decrease of Total Force Due to Seepage:

\[P'_1 - P'_2 = iz \gamma_w A \]

Seepage Force per Unit Volume:

\[\frac{P'_1 - P'_2}{(\text{Soil Volume})} = iz \gamma_w A = i \gamma_w \]
SEEPAGE FORCE SUMMARY

NO SEEPAGE

Volume of soil = zA

\[(\gamma' - i\gamma_w)A\] = \[\gamma'A\] + \[i\gamma_wA = \text{seepage force}\]

UPWARD SEEPAGE

Volume of soil = zA

\[\gamma'A\]

DOWNWARD SEEPAGE

Volume of soil = zA

\[(\gamma' + i\gamma_w)A\] = \[\gamma'A\] + \[i\gamma_wA = \text{seepage force}\]