PROBLEM 4.4

For the beam and loading shown, determine (a) the reaction at A, (b) the tension in cable BC.

SOLUTION

Free-Body Diagram:

(a) Reaction at A: \(\Sigma F_x = 0 \): \(A_x = 0 \)

\[+ \Sigma M_B = 0: \ (15 \text{ lb})(28 \text{ in.}) + (20 \text{ lb})(22 \text{ in.}) + (35 \text{ lb})(14 \text{ in.}) + (20 \text{ lb})(6 \text{ in.}) - A_y(6 \text{ in.}) = 0 \]

\[A_y = +245 \text{ lb} \quad A = 245 \text{ lb} \uparrow \]

(b) Tension in BC: \(+ \Sigma M_A = 0: \ (15 \text{ lb})(22 \text{ in.}) + (20 \text{ lb})(16 \text{ in.}) + (35 \text{ lb})(8 \text{ in.}) - (15 \text{ lb})(6 \text{ in.}) - F_{BC}(6 \text{ in.}) = 0 \]

\[F_{BC} = +140.0 \text{ lb} \quad F_{BC} = 140.0 \text{ lb} \uparrow \]

Check: \(+ \Sigma F_y = 0: \ -15 \text{ lb} - 20 \text{ lb} = 35 \text{ lb} - 20 \text{ lb} + A - F_{BC} = 0 \)

\[-105 \text{ lb} + 245 \text{ lb} - 140.0 = 0 \]

\[0 = 0 \quad (\text{Checks}) \]
PROBLEM 4.7

A T-shaped bracket supports the four loads shown. Determine the reactions at A and B (a) if a = 10 in., (b) if a = 7 in.

SOLUTION

Free-Body Diagram:

\[\sum F_x = 0: \quad B_x = 0 \]

\[\sum M_B = 0: \quad (40 \text{ lb})(6 \text{ in.}) - (30 \text{ lb})a - (10 \text{ lb})(a + 8 \text{ in.}) + (12 \text{ in.})A = 0 \]

\[A = \frac{(40a - 160)}{12} \]

(1)

\[\sum M_A = 0: \quad -(40 \text{ lb})(6 \text{ in.}) - (50 \text{ lb})(12 \text{ in.}) - (30 \text{ lb})(a + 12 \text{ in.}) - (10 \text{ lb})(a + 20 \text{ in.}) + (12 \text{ in.})B_y = 0 \]

\[B_y = \frac{(1400 + 40a)}{12} \]

Since

\[B_x = 0, \quad B = \frac{(1400 + 40a)}{12} \]

(2)

(a) For a = 10 in.,

Eq. (1):

\[A = \frac{(40 \times 10 - 160)}{12} = +20.0 \text{ lb} \]

A = 20.0 lb \downarrow

Eq. (2):

\[B = \frac{(1400 + 40 \times 10)}{12} = +150.0 \text{ lb} \]

B = 150.0 lb \uparrow

(b) For a = 7 in.,

Eq. (1):

\[A = \frac{(40 \times 7 - 160)}{12} = +10.00 \text{ lb} \]

A = 10.00 lb \downarrow

Eq. (2):

\[B = \frac{(1400 + 40 \times 7)}{12} = +140.0 \text{ lb} \]

B = 140.0 lb \uparrow
PROBLEM 4.9

Three loads are applied as shown to a light beam supported by cables attached at B and D. Neglecting the weight of the beam, determine the range of values of Q for which neither cable becomes slack when $P = 0$.

SOLUTION

Free-Body Diagram:

For Q_{min}, $T_D = 0$

\[\sum M_B = 0: \quad (7.5 \text{ kN})(0.5 \text{ m}) - Q_{\text{min}}(3 \text{ m}) = 0 \]

\[Q_{\text{min}} = 1.250 \text{ kN} \]

For Q_{max}, $T_B = 0$

\[\sum M_D = 0: \quad (7.5 \text{ kN})(2.75 \text{ m}) - Q_{\text{max}}(0.75 \text{ m}) = 0 \]

\[Q_{\text{max}} = 27.5 \text{ kN} \]

Therefore:

\[1.250 \text{ kN} \leq Q \leq 27.5 \text{ kN} \]
PROBLEM 4.14

For the beam and loading shown, determine the range of the distance \(a \) for which the reaction at \(B \) does not exceed 100 lb downward or 200 lb upward.

SOLUTION

Assume \(B \) is positive when directed ↑.

Sketch showing distance from \(D \) to forces.

\[
\sum M_D = 0: \quad (300 \text{ lb})(8 \text{ in.} - a) - (300 \text{ lb})(a - 2 \text{ in.}) - (50 \text{ lb})(4 \text{ in.}) + 16B = 0 \\
-600a + 2800 + 16B = 0 \\
a = \frac{(2800 + 16B)}{600} \quad (1)
\]

For \(B = 100 \text{ lb} \uparrow = -100 \text{ lb} \), Eq. (1) yields:

\[
a \geq \frac{[2800 + 16(-100)]}{600} = \frac{1200}{600} = 2 \text{ in.} \\
a \geq 2.00 \text{ in.} \quad \triangleleft
\]

For \(B = 200 \text{ lb} \uparrow = +200 \text{ lb} \), Eq. (1) yields:

\[
a \leq \frac{[2800 + 16(200)]}{600} = \frac{6000}{600} = 10 \text{ in.} \\
a \leq 10.00 \text{ in.} \quad \triangleleft
\]

Required range: \(2.00 \text{ in.} \leq a \leq 10.00 \text{ in.} \)