PROBLEM 2.1

Two forces are applied as shown to a hook. Determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure: \(R = 1391 \text{ kN}, \quad \alpha = 47.8^\circ \)
PROBLEM 2.3

Two structural members B and C are bolted to bracket A. Knowing that both members are in tension and that $P = 10$ kN and $Q = 15$ kN, determine graphically the magnitude and direction of the resultant force exerted on the bracket using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure: $R = 20.1$ kN, $\alpha = 21.2^\circ$
PROBLEM 2.7

A telephone cable is clamped at A to the pole AB. Knowing that the tension in the right-hand portion of the cable is $T_2 = 1000$ lb, determine by trigonometry (a) the required tension T_1 in the left-hand portion if the resultant R of the forces exerted by the cable at A is to be vertical, (b) the corresponding magnitude of R.

SOLUTION

Using the triangle rule and the law of sines:

(a)

$$75^\circ + 40^\circ + \beta = 180^\circ$$

$$\beta = 180^\circ - 75^\circ - 40^\circ = 65^\circ$$

$$\frac{1000 \text{ lb}}{\sin 75^\circ} = \frac{T_1}{\sin 65^\circ}$$

$$T_1 = 938 \text{ lb}$$

(b)

$$\frac{1000 \text{ lb}}{\sin 75^\circ} = \frac{R}{\sin 40^\circ}$$

$$R = 665 \text{ lb}$$
PROBLEM 2.11

A steel tank is to be positioned in an excavation. Knowing that $\alpha = 20^\circ$, determine by trigonometry

(a) the required magnitude of the force \(P \) if the resultant \(R \) of the two forces applied at \(A \) is to be vertical,

(b) the corresponding magnitude of \(R \).

SOLUTION

Using the triangle rule and the law of sines:

(a) \[\beta + 50^\circ + 60^\circ = 180^\circ \]
\[\beta = 180^\circ - 50^\circ - 60^\circ \]
\[= 70^\circ \]
\[\frac{425 \text{ lb}}{\sin 70^\circ} = \frac{P}{\sin 60^\circ} \]
\[P = 392 \text{ lb} \]

(b) \[\frac{425 \text{ lb}}{\sin 70^\circ} = \frac{R}{\sin 50^\circ} \]
\[R = 346 \text{ lb} \]
PROBLEM 2.22

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

\[OA = \sqrt{(600)^2 + (800)^2} = 1000 \text{ mm} \]
\[OB = \sqrt{(560)^2 + (900)^2} = 1060 \text{ mm} \]
\[OC = \sqrt{(480)^2 + (900)^2} = 1020 \text{ mm} \]

800-N Force:

\[F_x = +(800 \text{ N}) \frac{800}{1000} \quad F_x = +640 \text{ N} \]
\[F_y = +(800 \text{ N}) \frac{600}{1000} \quad F_y = +480 \text{ N} \]

424-N Force:

\[F_x = -(424 \text{ N}) \frac{560}{1060} \quad F_x = -224 \text{ N} \]
\[F_y = -(424 \text{ N}) \frac{900}{1060} \quad F_y = -360 \text{ N} \]

408-N Force:

\[F_x = +(408 \text{ N}) \frac{480}{1020} \quad F_x = +192.0 \text{ N} \]
\[F_y = -(408 \text{ N}) \frac{900}{1020} \quad F_y = -360 \text{ N} \]
PROBLEM 2.31

Determine the resultant of the three forces of Problem 2.21.

PROBLEM 2.21 Determine the x and y components of each of the forces shown.

SOLUTION

Components of the forces were determined in Problem 2.21:

<table>
<thead>
<tr>
<th>Force</th>
<th>x Comp. (lb)</th>
<th>y Comp. (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 lb</td>
<td>+21.0</td>
<td>+20.0</td>
</tr>
<tr>
<td>50 lb</td>
<td>-14.00</td>
<td>+48.0</td>
</tr>
<tr>
<td>51 lb</td>
<td>+24.0</td>
<td>-45.0</td>
</tr>
</tbody>
</table>

\[R_x = +31.0 \quad R_y = +23.0 \]

\[R = R_x \mathbf{i} + R_y \mathbf{j} \]
\[= (31.0 \text{ lb}) \mathbf{i} + (23.0 \text{ lb}) \mathbf{j} \]
\[\tan \alpha = \frac{R_y}{R_x} \]
\[= \frac{23.0}{31.0} \]
\[\alpha = 36.573^\circ \]
\[R = \frac{23.0 \text{ lb}}{\sin(36.573^\circ)} \]
\[= 38.601 \text{ lb} \]

\[R = 38.6 \text{ lb} \angle 36.6^\circ \]
PROBLEM 2.36
Knowing that the tension in rope AC is 365 N, determine the resultant of the three forces exerted at point C of post BC.

SOLUTION
Determine force components:

Cable force AC:

- $F_x = -\frac{(365 \text{ N}) \times 960}{1460} = -240 \text{ N}$
- $F_y = -(365 \text{ N}) \times \frac{1100}{1460} = -275 \text{ N}$

500-N Force:

- $F_x = (500 \text{ N}) \times \frac{24}{25} = 480 \text{ N}$
- $F_y = (500 \text{ N}) \times \frac{7}{25} = 140 \text{ N}$

200-N Force:

- $F_x = (200 \text{ N}) \times \frac{4}{5} = 160 \text{ N}$
- $F_y = -(200 \text{ N}) \times \frac{3}{5} = -120 \text{ N}$

and

- $R_x = \Sigma F_x = -240 \text{ N} + 480 \text{ N} + 160 \text{ N} = 400 \text{ N}$
- $R_y = \Sigma F_y = -275 \text{ N} + 140 \text{ N} - 120 \text{ N} = -255 \text{ N}$

- $R = \sqrt{R_x^2 + R_y^2}$
 - $R = \sqrt{(400 \text{ N})^2 + (-255 \text{ N})^2}$
 - $R = 474.37 \text{ N}$

Further:

- $\tan \alpha = \frac{255}{400}$
- $\alpha = 32.5^\circ$

$\mathbf{R} = 474 \text{ N} \angle 32.5^\circ$
PROBLEM 2.37

Knowing that $\alpha = 40^\circ$, determine the resultant of the three forces shown.

SOLUTION

60-lb Force:
$F_x = (60 \text{ lb}) \cos 20^\circ = 56.382 \text{ lb}$
$F_y = (60 \text{ lb}) \sin 20^\circ = 20.521 \text{ lb}$

80-lb Force:
$F_x = (80 \text{ lb}) \cos 60^\circ = 40.000 \text{ lb}$
$F_y = (80 \text{ lb}) \sin 60^\circ = 69.282 \text{ lb}$

120-lb Force:
$F_x = (120 \text{ lb}) \cos 30^\circ = 103.923 \text{ lb}$
$F_y = -(120 \text{ lb}) \sin 30^\circ = -60.000 \text{ lb}$

and
$R_x = \Sigma F_x = 200.305 \text{ lb}$
$R_y = \Sigma F_y = 29.803 \text{ lb}$

$R = \sqrt{(200.305 \text{ lb})^2 + (29.803 \text{ lb})^2} = 202.510 \text{ lb}$

Further:
$\tan \alpha = \frac{29.803}{200.305}$

$\alpha = \tan^{-1} \left(\frac{29.803}{200.305} \right) = 8.46^\circ$

$R = 203 \text{ lb } \angle 8.46^\circ$
PROBLEM 2.43

Two cables are tied together at C and are loaded as shown. Determine the tension (a) in cable AC, (b) in cable BC.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:
\[
\frac{T_{AC}}{\sin 60^\circ} = \frac{T_{BC}}{\sin 40^\circ} = \frac{400 \text{ lb}}{\sin 80^\circ}
\]

(a) \hfill T_{AC} = \frac{400 \text{ lb}}{\sin 80^\circ} (\sin 60^\circ) \hfill T_{AC} = 352 \text{ lb} \\

(b) \hfill T_{BC} = \frac{400 \text{ lb}}{\sin 80^\circ} (\sin 40^\circ) \hfill T_{BC} = 261 \text{ lb}
PROBLEM 2.48
Knowing that $\alpha = 20^\circ$, determine the tension (a) in cable AC, (b) in rope BC.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

\[
\frac{T_{AC}}{\sin 110^\circ} = \frac{T_{BC}}{\sin 5^\circ} = \frac{1200 \text{ lb}}{\sin 65^\circ}
\]

(a)

\[
T_{AC} = \frac{1200 \text{ lb}}{\sin 65^\circ} \sin 110^\circ
\]

\[T_{AC} = 1244 \text{ lb} \quad \blacktriangleleft\]

(b)

\[
T_{BC} = \frac{1200 \text{ lb}}{\sin 65^\circ} \sin 5^\circ
\]

\[T_{BC} = 115.4 \text{ lb} \quad \blacktriangleleft\]
PROBLEM 2.49

Two cables are tied together at C and are loaded as shown. Knowing that \(P = 300 \, \text{N} \), determine the tension in cables \(AC \) and \(BC \).

SOLUTION

Free-Body Diagram

\[\sum F_x = 0 \quad -T_{CA} \sin 30^\circ + T_{CB} \sin 30^\circ - P \cos 45^\circ - 200 \, \text{N} = 0 \]

For \(P = 200 \, \text{N} \) we have,

\[-0.5T_{CA} + 0.5T_{CB} + 212.13 - 200 = 0 \quad (1) \]

\[\sum F_y = 0 \quad T_{CA} \cos 30^\circ - T_{CB} \cos 30^\circ - P \sin 45^\circ = 0 \]

\[0.86603T_{CA} + 0.86603T_{CB} - 212.13 = 0 \quad (2) \]

Solving equations (1) and (2) simultaneously gives,

\[T_{CA} = 134.6 \, \text{N} \]

\[T_{CB} = 110.4 \, \text{N} \]
PROBLEM 2.67

A 600-lb crate is supported by several rope-and-pulley arrangements as shown. Determine for each arrangement the tension in the rope. (See the hint for Problem 2.66.)

SOLUTION

Free-Body Diagram of Pulley

(a) \[+ \sum F_y = 0: \quad 2T - (600 \text{ lb}) = 0 \]
 \[T = \frac{1}{2}(600 \text{ lb}) \]
 \[T = 300 \text{ lb} \]

(b) \[+ \sum F_y = 0: \quad 2T - (600 \text{ lb}) = 0 \]
 \[T = \frac{1}{2}(600 \text{ lb}) \]
 \[T = 300 \text{ lb} \]

(c) \[+ \sum F_y = 0: \quad 3T - (600 \text{ lb}) = 0 \]
 \[T = \frac{1}{3}(600 \text{ lb}) \]
 \[T = 200 \text{ lb} \]

(d) \[+ \sum F_y = 0: \quad 3T - (600 \text{ lb}) = 0 \]
 \[T = \frac{1}{3}(600 \text{ lb}) \]
 \[T = 200 \text{ lb} \]

(e) \[+ \sum F_y = 0: \quad 4T - (600 \text{ lb}) = 0 \]
 \[T = \frac{1}{4}(600 \text{ lb}) \]
 \[T = 150.0 \text{ lb} \]