PROBLEM 3.35

Given the vectors \(P = 2i + 3j - k \), \(Q = 5i - 4j + 3k \), and \(S = -3i + 2j - 5k \), compute the scalar products \(P \cdot Q \), \(P \cdot S \), and \(Q \cdot S \).

SOLUTION

\[
P \cdot Q = (2i + 3j - k) \cdot (5i - 4j + 3k) \\
= (2)(5) + (3)(-4) + (-1)(3) \\
= 10 - 12 - 3 \\
P \cdot Q = -5
\]

\[
P \cdot S = (2i + 3j - k) \cdot (-3i + 2j - 5k) \\
= (2)(-3) + (3)(2) + (-1)(-5) \\
= -6 + 6 + 5 \\
P \cdot S = +5
\]

\[
Q \cdot S = (5i - 4j + 3k) \cdot (-3i + 2j - 5k) \\
= (5)(-3) + (-4)(2) + (3)(-5) \\
= -15 - 8 - 15 \\
Q \cdot S = -38
\]
PROBLEM 3.40

Knowing that the tension in cable AD is 180 lb, determine (a) the angle between cable AD and the boom AB, (b) the projection on AB of the force exerted by cable AD at point A.

SOLUTION

(a) First note

\[AD = \sqrt{(-6)^2 + (3)^2 + (-6)^2} = 9.00 \text{ ft} \]

\[AB = \sqrt{(-6)^2 + (-4.5)^2 + (0)^2} = 7.50 \text{ ft} \]

and

\[\overrightarrow{AD} = -(6 \text{ ft})\mathbf{i} + (3 \text{ ft})\mathbf{j} - (6 \text{ ft})\mathbf{k} \]

\[\overrightarrow{AB} = -(6 \text{ ft})\mathbf{i} - (4.5 \text{ ft})\mathbf{j} \]

By definition,

\[\overrightarrow{AD} \cdot \overrightarrow{AB} = (AD)(AB) \cos \theta \]

\[(-6\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) \cdot (-6\mathbf{i} - 4.5\mathbf{j}) = (9.00)(7.50) \cos \theta \]

\[(-6)(-6) + (3)(-4.5) + (-6)(0) = 67.50 \cos \theta \]

\[\cos \theta = \frac{1}{3} \]

\[\theta = 70.5^\circ \]

(b)

\[(T_{AD})_{AB} = T_{AD} \cdot \lambda_{AB} = T_{AD} \cos \theta \]

\[= (180 \text{ lb}) \left(\frac{1}{3} \right) \]

\[(T_{AD})_{AB} = 60.0 \text{ lb} \]
PROBLEM 3.57

The frame ACD is hinged at A and D and is supported by a cable that passes through a ring at B and is attached to hooks at G and H. Knowing that the tension in the cable is 450 N, determine the moment about the diagonal AD of the force exerted on the frame by portion BH of the cable.

SOLUTION

$$M_{AD} = \lambda_{AD} \cdot (r_{B/A} \times T_{BH})$$

Where

$$\lambda_{AD} = \frac{1}{5}(4i - 3k)$$

$$r_{B/A} = (0.5 \text{ m})i$$

and

$$d_{BH} = \sqrt{(0.375)^2 + (0.75)^2 + (-0.75)^2} = 1.125 \text{ m}$$

Then

$$T_{BH} = \frac{450 \text{ N}}{1.125}(0.375i + 0.75j - 0.75k)$$

$$= (150 \text{ N})i + (300 \text{ N})j - (300 \text{ N})k$$

Finally,

$$M_{AD} = \frac{1}{5} \begin{bmatrix} 4 & 0 & -3 \\ 0.5 & 0 & 0 \\ 150 & 300 & -300 \end{bmatrix}$$

$$= \frac{1}{5}[(−3)(0.5)(300)]$$

or $M_{AD} = -90.0 \text{ N} \cdot \text{m}$