PROBLEM 16.87

A 1.5-kg slender rod is welded to a 5-kg uniform disk as shown. The assembly swings freely about C in a vertical plane. Knowing that in the position shown the assembly has an angular velocity of 10 rad/s clockwise, determine (a) the angular acceleration of the assembly, (b) the components of the reaction at C.

SOLUTION

Kinematics:

\[\mathbf{a}_n = (CG)\alpha = (0.14 \text{ m})(10 \text{ rad/s}^2) \]
\[\mathbf{a}_r = 14 \text{ m/s}^2 \]
\[\mathbf{a}_e = (CG)\alpha = (0.14 \text{ m})\alpha \]

Kinetics:

\[T_{\text{disk}} = \frac{1}{2} m_{\text{disk}} (CG)^2 \]
\[= \frac{1}{2} (5 \text{ kg})(0.08 \text{ m})^2 \]
\[= 16 \times 10^{-3} \text{ kg} \cdot \text{m}^2 \]
\[T_{\text{AB}} = \frac{1}{12} m_{\text{AB}} (AB)^2 \]
\[= \frac{1}{12} (1.5 \text{ kg})(0.12 \text{ m})^2 \]
\[= 1.8 \times 10^{-3} \text{ kg} \cdot \text{m}^2 \]

(a) Angular acceleration.

\[\Sigma M_C = \Sigma (M_C)_{\text{eff}}: \]
\[W_{AB}(0.14 \text{ m}) = T_{\text{disk}}\alpha + m_{AB}\mathbf{a}_e(0.14 \text{ m}) + T_{AB}\alpha \]
\[(1.5 \text{ kg})(9.81 \text{ m/s}^2)(0.14 \text{ m}) = T_{\text{disk}}\alpha + (1.5 \text{ kg})(0.14 \text{ m})^2\alpha + T_{AB}\alpha \]
\[2.060 \text{ N} \cdot \text{m} = (16 \times 10^{-3} + 29.4 \times 10^{-3} + 1.8 \times 10^{-3})\alpha \]
\[2.060 \text{ N} \cdot \text{m} = (47.2 \times 10^{-3} \text{ kg} \cdot \text{m}^2)\alpha \]
\[\alpha = 43.64 \text{ rad/s}^2 \]
\[\alpha = 43.6 \text{ rad/s}^2 \]
PROBLEM 16.87 (Continued)

(b) Components of reaction of C.

$$\sum \Sigma F_x = \Sigma (F_x)_{\text{eff}} : \quad C_x = -m_{AB}\ddot{a}_x = -(1.5 \text{ kg})(14 \text{ m/s}^2)$$

$$C_x = -21.0 \text{ N} \quad C_x = 21.0 \text{ N} \quad \leftarrow \uparrow$$

$$\sum \Sigma F_y = \Sigma (F_y)_{\text{eff}} : \quad a_y = (0.14 \text{ m})(\alpha)$$

$$C_y - m_{\text{disk}}g - m_{AB}g = -m_{AB}\ddot{a}_y$$

$$C_y - (5 \text{ kg})9.81 - (1.5 \text{ kg})9.81 = -(1.5 \text{ kg})(0.14 \text{ m})(43.64 \text{ rad/s}^2)$$

$$C_y - 49.05 \text{ N} - 14.715 \text{ N} = -9.164 \text{ N}$$

$$C_y = +54.6 \text{ N} \quad \quad C_y = 54.6 \text{ N} \uparrow \downarrow$$
PROBLEM 16.88

Two identical 4-lb slender rods AB and BC are connected by a pin at B and by the cord AC. The assembly rotates in a vertical plane under the combined effect of gravity and a 6 lb-ft couple \mathbf{M} applied to rod AB. Knowing that in the position shown the angular velocity of the assembly is zero, determine (a) the angular acceleration of the assembly, (b) the tension in cord AC.

SOLUTION

(a)

\[\Sigma M_A = (4 \text{ lb})(0.5 \text{ ft}) + (4 \text{ lb})(1.25 \text{ ft}) - 6 \text{ lb-ft} \]

\[= 2 \left(\frac{1}{12} \right) \left(\frac{4 \text{ lb}}{32.2 \text{ ft/s}^2} \right) (1 \text{ ft})^2 \alpha + \left(\frac{4 \text{ lb}}{32.2 \text{ ft/s}^2} \right) (0.5 \text{ ft})^2 \alpha \]

\[+ \left(\frac{4 \text{ lb}}{32.2 \text{ ft/s}^2} \right) (1.25 \text{ ft})^2 \alpha + \left(\frac{4 \text{ lb}}{32.2 \text{ ft/s}^2} \right) [0.5 \text{ ft}(0.866)]^2 \alpha \]

\[(7 - 6) \text{ lb-ft} = (0.26915) \alpha \]

\[\alpha = 3.7154 \text{ rad/s}^2 \]

or \(\alpha = 3.72 \text{ rad/s}^2 \)

(b)

\[\frac{4}{32.2} (1.25) \alpha \]

\[\frac{4}{(32.2)^2} (0.5) (0.866) \alpha \]

\[0.5 \sin 33^\circ = 0.25 \text{ ft} \]

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
PROBLEM 16.88 (Continued)

\[\Sigma M_B = (4 \text{ lb})(0.25 \text{ ft}) - T(1 \text{ ft})(\sin 30^\circ) \]

\[= \frac{1}{12} \left(\frac{4 \text{ lb}}{32.2 \text{ ft/s}^2} \right)(1 \text{ ft})^2 \alpha + \left(\frac{4 \text{ lb}}{32.2 \text{ ft/s}^2} \right)(1.25 \text{ ft})(0.25 \text{ ft}) \alpha \]

\[+ \left(\frac{4 \text{ lb}}{32.2 \text{ ft/s}^2} \right)(0.5 \text{ ft})(\cos 30^\circ)(0.433 \text{ ft}) \alpha \]

\[= 0.07246 \alpha = (0.07246)(3.7154) = 1 - T(0.5) = 0.26922 \]

\[T = 1.462 \text{ lb} \]

or \[T = 1.462 \text{ lb} \]
PROBLEM 16.122

End A of the 6-kg uniform rod AB rests on the inclined surface, while end B is attached to a collar of negligible mass which can slide along the vertical rod shown. When the rod is at rest a vertical force P is applied at B, causing end B of the rod to start moving upward with an acceleration of 4 m/s^2. Knowing that $\theta = 35^\circ$, determine the force P.

SOLUTION

Kinematics:

\[
a_B = 4 \text{ m/s}^2 \uparrow
\]

\[
(\omega = 0)
\]

\[
a_A = a_B + a_{AB}
\]

\[
a_d = 25^\circ = 4 \uparrow + 1.5 \alpha \searrow 35^\circ
\]

Law of sines:

\[
\frac{1.5 \alpha}{\sin 65^\circ} = \frac{4}{\sin 60^\circ}
\]

\[
\alpha = 2.7907 \text{ rad/s}^2
\]

\[
\bar{a} = a_G = a_B + a_{AB} = 4 \uparrow + 0.75 (2.7907) \searrow 35^\circ
\]

\[
\bar{a}_x = 0.75 (2.7907) \cos 35^\circ = 1.7145 \text{ m/s}^2 \rightarrow
\]

\[
\bar{a}_y = 4 \uparrow + 0.75 (2.7907) \sin 35^\circ = 2.7995 \text{ m/s}^2 \uparrow
\]

Kinetics:

\[
T = \frac{1}{12} ml^2 = \frac{1}{12} (6 \text{ kg})(1.5 \text{ m})^2 = 1.125 \text{ kg} \cdot \text{m}^2
\]

Law of sines:

\[
\frac{EB}{\sin 60^\circ} = \frac{AB}{\sin 65^\circ}, \quad EB = \frac{\sin 60^\circ (1.5)}{\sin 65^\circ} = 1.4333 \text{ m}
\]
PROBLEM 16.122 (Continued)

\[ED = EB - DB = 1.4333 - 0.75 \cos 55^\circ = 1.0031 \text{ m} \]

\[DG = 0.75 \sin 55^\circ = 0.61436 \text{ m} \]

\[+ \sum M = \sum (M_E)_{\text{eff}} : P(EB) - W(ED) = \bar{T\alpha} + m\bar{p}_x(\bar{DG}) + m\bar{p}_y(\bar{ED}) \]

\[P(1.4333) - 6(9.81)(1.0031) = 1.125(2.7907) + (6)(1.7145)(0.61436) \]

\[+ (6)(2.7995)(1.0031) \]

\[1.4333P - 59.0425 = 3.1395 + 6.3199 + 16.8491 \]

\[1.4333P = 85.531 \]

\[P = 59.5 \text{ N} \]