## Exam 1 Solution

1. Note that it will be easier to work with $P(\bar{A})=P(\bar{A} \cap \bar{B})+P(\bar{A} \cap B)$, since we have $P(\bar{A} \cap \bar{B})=1-P(A \cup B)=1-0.7=0.3$ and $P(\bar{A} \cap B)=1-P(A \cup \bar{B})=1-0.9=0.1$ (by DeMorgan's laws), so that $P(\bar{A})=P(\bar{A} \cap \bar{B})+P(\bar{A} \cap B)=0.3+0.1=0.4$. Hence

$$
P(A)=1-P(\bar{A})=1-0.4=0.6
$$

2. Let $M=\{\operatorname{Man}\}$ and $\bar{M}=W=\{$ Woman $\}$. Let $S m=\{$ Smoker $\}$. Then we have that

$$
P(M)=4 / 10, \quad P(\bar{M})=P(W)=6 / 10, \quad P(S m \mid M)=1 / 4, \quad P(S m \mid \bar{M})=1 / 5
$$

(a) Using the law of total probability,

$$
\begin{aligned}
P(S m) & =P(\{S m \cap M\} \cup\{S m \cap \bar{M}\})=P(S m \cap M)+P(S m \cap \bar{M}) \\
& =P(S m \mid M) P(M)+P(S m \mid \bar{M}) P(\bar{M})=(1 / 4)(4 / 10)+(1 / 5)(6 / 10)=11 / 50
\end{aligned}
$$

(b) Using part (a) or Bayes Rule,

$$
P(M \mid S m)=\frac{P(M \cap S m)}{P(S m)}=\frac{P(S m \mid M) P(M)}{P(S m)}=\frac{(1 / 4)(4 / 10)}{11 / 50}=\frac{5}{11}
$$

3. Note that the $Y$ take values $1,2, \ldots, 6$. Then

$$
\begin{aligned}
P(Y=1) & =\frac{1}{6} \\
P(Y=2) & =\frac{5}{6} \frac{1}{5}=\frac{1}{6} \\
P(Y=3) & =\frac{5}{6} \frac{1}{5} \frac{1}{4}=\frac{1}{6} \\
& \vdots \\
P(Y=6) & =\frac{5}{6} \frac{4}{5} \frac{2}{4} \frac{1}{3} \frac{1}{2}=\frac{1}{6}
\end{aligned}
$$

Therefore,

$$
P(Y=y)=\frac{1}{6}
$$

for all $y=1, \ldots, 6$.

