## Exam 2 Solution

1. Since we can recognize that

$$
f_{Y}(y)=c y^{2} / e^{y}=c y^{2} e^{-y}=c y^{3-1} e^{-y / 1}
$$

must be a gamma pdf with $\alpha=3$ and $\beta=1$, we can see that

$$
f_{Y}(y)=\frac{y^{3-1} e^{-y / 1}}{\Gamma(3) 1^{3}}=\frac{y^{3-1} e^{-y / 1}}{(3-1)!\cdot 1}=\frac{y^{3-1} e^{-y / 1}}{2}
$$

from which we immediately conclude that

$$
c=1 / 2 .
$$

2. Since, $f_{Y_{1}}\left(y_{1}\right)=\int_{y_{1}}^{\infty} e^{-y_{2}} d y_{2}=e^{-y_{1}}$, we have that

$$
f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right)=\frac{f\left(y_{1}, y_{2}\right)}{f_{Y_{1}}\left(y_{1}\right)}=\frac{e^{-y_{2}}}{e^{-y_{1}}}=e^{-y_{2}} e^{y_{1}}=e^{-\left(y_{2}-y_{1}\right)}, \quad 0<y_{1}<y_{2}<\infty .
$$

3. (a) We have that

$$
\begin{aligned}
E\left(Y_{1} Y_{2}\right) & =\iint y_{1} y_{2} f\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=\int_{0}^{1} \int_{0}^{1-y_{2}} y_{1} y_{2} 24 y_{1} y_{2} d y_{1} d y_{2} \\
& =\int_{0}^{1} \int_{0}^{1-y_{2}} 24 y_{1}^{2} y_{2}^{2} d y_{1} d y_{2}=24 \int_{0}^{1} y_{2}^{2} \int_{0}^{1-y_{2}} y_{1}^{2} d y_{1} d y_{2} \\
& =8 \int_{0}^{1} y_{2}^{2}\left(1-y_{2}\right)^{3} d y_{2}=8 \int_{0}^{1} y_{2}^{3-1}\left(1-y_{2}\right)^{4-1} d y_{2} \\
& =8 \frac{\Gamma(3) \Gamma(4)}{\Gamma(3+4)} \int_{0}^{1} \frac{\Gamma(3+4)}{\Gamma(3) \Gamma(4)} y_{2}^{3-1}\left(1-y_{2}\right)^{4-1} d y_{2}=8 \frac{\Gamma(3) \Gamma(4)}{\Gamma(7)}=8 \frac{2!3!}{6!}=\frac{2}{15}
\end{aligned}
$$

(b) (Bonus) Noting that it is easier to integrate over $Y_{2}$ first and that the bound for $Y_{1}$ stops at $1 / 2$ in this way (why?),

$$
\begin{aligned}
P\left(Y_{1} \leq Y_{2}\right) & =\int_{0}^{1 / 2} \int_{y_{1}}^{1-y_{1}} 24 y_{1} y_{2} d y_{2} d y_{1} \\
& =\int_{0}^{1 / 2} 12 y_{1}\left[\left.y_{2}^{2}\right|_{y_{1}} ^{1-y_{1}}\right] d y_{1}=\int_{0}^{1 / 2} 12 y_{1}\left[\left(1-y_{1}\right)^{2}-y_{1}^{2}\right] d y_{1} \\
& =\int_{0}^{1 / 2} 12 y_{1}\left[1-2 y_{1}\right] d y_{1}=\int_{0}^{1 / 2}\left(12 y_{1}-24 y_{1}^{2}\right) d y_{1} \\
& =\left[6 y_{1}^{2}-\left.8 y_{1}^{3}\right|_{0} ^{1 / 2}\right]=\frac{6}{4}-\frac{8}{8}=\frac{1}{2}
\end{aligned}
$$

