Homework 8

Due Thursday, March 28

1. Two fair dice are rolled. Find the joint probability function of Y_{1} and Y_{2}, when Y_{1} is the value on the first die and Y_{2} is the larger of the two values. Assume that the ties are allowed (e.g., the event $\left\{Y_{1}=2, Y_{2}=2\right\}$ has outcomes $(2,1)$ and $(2,2)$).
2. Suppose that balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let Y_{i} equal 1 if the i th ball selected is white, and let it equal 0 otherwise. Give the joint probability function of $\left(Y_{1}, Y_{2}\right)$.
3. The joint density (pdf) of Y_{1} and Y_{2} is given by

$$
f\left(y_{1}, y_{2}\right)=e^{-\left(y_{1}+y_{2}\right)}, \quad 0<y_{1}<\infty, 0<y_{2}<\infty
$$

(a) Find $P\left(Y_{1}<1, Y_{2}>5\right)$.
(b) Find $P\left(Y_{1}+Y_{2}<3\right)$.
(c) Find $P\left(Y_{1}<Y_{2}\right)$.
4. Show that $f\left(y_{1}, y_{2}\right)=1 / y_{1}, 0<y_{2}<y_{1}<1$, is a joint density function of Y_{1} and Y_{2}.
(HINT: The order in which you want to integrate makes a difference).
5. The joint density function of Y_{1} and Y_{2} is given by

$$
f\left(y_{1}, y_{2}\right)=y_{1} e^{-y_{1}\left(y_{2}+1\right)}, \quad y_{1}>0, y_{2}>0
$$

Find the conditional density of Y_{1}, given $Y_{2}=y_{2}$.
6. The joint density of Y_{1} and Y_{2} is

$$
f\left(y_{1}, y_{2}\right)=c\left(y_{1}^{2}-y_{2}^{2}\right) e^{-y_{1}}, \quad 0 \leq y_{1}<\infty,-y_{1} \leq y_{2} \leq y_{1}
$$

Find the conditional density of Y_{2}, given $Y_{1}=y_{1}$.
7. Let Y_{1} and Y_{2} have the joint probability density function given by

$$
f\left(y_{1}, y_{2}\right)=k\left(1-y_{2}\right), \quad 0 \leq y_{1} \leq y_{2} \leq 1
$$

(a) Find the value of k that makes this a probability density function.
(b) Find $P\left(Y_{1} \leq 3 / 4, Y_{2} \geq 1 / 2\right)$.
(c) Find the marginal density functions for Y_{1} and Y_{2}.
(d) Find the conditional density function of Y_{1} given $Y_{2}=y_{2}$.
(e) Find the conditional density function of Y_{2} given $Y_{1}=y_{1}$.
(f) Find $P\left(Y_{2} \geq 3 / 4 \mid Y_{1}=1 / 2\right)$.
8. The joint probability function of Y_{1} and Y_{2} is given by

$$
\begin{array}{ll}
p(1,1)=P\left(Y_{1}=0, Y_{2}=1\right)=\frac{1}{8}, & p(1,2)=P\left(Y_{1}=0, Y_{2}=2\right)=\frac{1}{4}, \\
p(2,1)=P\left(Y_{1}=2, Y_{2}=1\right)=\frac{1}{8}, & p(2,2)=P\left(Y_{1}=2, Y_{2}=2\right)=\frac{1}{2} .
\end{array}
$$

(a) Compute the conditional probability function of Y_{1}, given $Y_{2}=i, i=1,2$
(b) Are Y_{1} and Y_{2} independent?
9. Are Y_{1} and Y_{2} independent if the joint density of Y_{1} and Y_{2} is given by
(a)

$$
f\left(y_{1}, y_{2}\right)=y_{1} e^{-\left(y_{1}+y_{2}\right)}, \quad 0<y_{1}<\infty, 0<y_{2}<\infty
$$

(b)

$$
f\left(y_{1}, y_{2}\right)=2, \quad 0<y_{1}<y_{2}, 0<y_{2}<2
$$

10. The joint density function of Y_{1} and Y_{2} is

$$
f\left(y_{1}, y_{2}\right)=y_{1}+y_{2}, \quad 0<y_{1}<1,0<y_{2}<1
$$

(a) Are Y_{1} and Y_{2} independent?
(b) Find the marginal densities (pdfs).
(c) Find $P\left(Y_{1}+Y_{2}<1\right)$.
11. (5090*) A and B agree to meet at certain place between 1 and 2 PM. Suppose that they arrive at the meeting place independently and randomly during the hour. Find the distribution of length of time that A waits for B (the waiting time is 0 if B arrives before A).
12. (5090*) Suppose that Y_{1} and Y_{2} are independent Poisson distributed random variables with means λ_{1} and λ_{2}, respectively. Let $W=Y_{1}+Y_{2} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$ (we will prove this fact in Chapter 6). Show that the conditional distribution of Y_{1} given $W=w$, is a binomial distribution with $n=w$ and $p=\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$.

