Homework 9

Due Thursday, April 4

1. The joint density function of Y_{1} and Y_{2} is

$$
f\left(y_{1}, y_{2}\right)=y_{1}+y_{2}, \quad 0<y_{1}<1,0<y_{2}<1
$$

Find $E\left(Y_{1}\right)$ and $E\left(Y_{2}\right)$.
2. Let $\left(Y_{1}, Y_{2}\right)$ have the joint pdf

$$
f\left(y_{1}, y_{2}\right)=4 y_{1} y_{2}, \quad 0<y_{1}<1,0<y_{2}<1
$$

Find
(a) $E\left(Y_{1}\right)$
(b) $\operatorname{Var}\left(Y_{1}\right)$
(c) $E\left(Y_{1}-Y_{2}\right)$
3. If Y_{1} and Y_{2} have joint density function

$$
f\left(y_{1}, y_{2}\right)=\frac{1}{y_{2}}, \quad 0<y_{1}<y_{2}<1
$$

find
(a) $E\left(Y_{1} Y_{2}\right)$
(b) $E\left(Y_{1}\right)$
(c) $E\left(Y_{2}\right)$
(d) $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$.
4. Let $\left(Y_{1}, Y_{2}\right)$ have the joint pdf

$$
f\left(y_{1}, y_{2}\right)=1, \quad 0<y_{1}<2,0<y_{2}<1,2 y_{2}<y_{1} .
$$

Find $E\left(Y_{1}-Y_{2}\right)$.
5. Let Y_{1} and Y_{2} have the joint probability density function given by

$$
f\left(y_{1}, y_{2}\right)=6\left(1-y_{2}\right), \quad 0 \leq y_{1} \leq y_{2} \leq 1
$$

(a) Show that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=1 / 40$
(b) Find $\operatorname{Var}\left(Y_{1}-3 Y_{2}\right)$
6. If Y_{1} and Y_{2} are random variables, and a and b are constants, show that
(a) $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\operatorname{Cov}\left(Y_{2}, Y_{1}\right)$
(b) $\operatorname{Cov}\left(a Y_{1}, Y_{2}\right)=a \operatorname{Cov}\left(Y_{1}, Y_{2}\right)$
(c) $\operatorname{Cov}\left(a Y_{1}, b Y_{2}\right)=a b \operatorname{Cov}\left(Y_{1}, Y_{2}\right)$
(d) $\operatorname{Cov}\left(a Y_{1}, Y_{1}+Y_{2}\right)=a \operatorname{Var}\left(Y_{1}\right)+a \operatorname{Cov}\left(Y_{1}, Y_{2}\right)$
(e) $\operatorname{Cov}\left(a Y_{1}+b Y_{2}, Y_{1}+Y_{2}\right)=a \operatorname{Var}\left(Y_{1}\right)+b \operatorname{Var}\left(Y_{2}\right)+(a+b) \operatorname{Cov}\left(Y_{1}, Y_{2}\right)$
7. An insurance policy pays a total medical benefit consisting of two parts for each claim. Let X represent the part of the benefit that is paid to the surgeon, and let Y represent the part that is paid to the hospital. The variance of X is 5,000 , the variance of Y is 10,000 , and the variance of the total benefit, $X+Y$, is 17,000 . Due to increasing medical costs, the company that issues the policy decides to increase X by a flat amount of 100 per claim and to increase Y by 10% per claim. Calculate the variance of the total benefit after these revisions have been made.
8. (5090*) Let X denote the size of a surgical claim and let Y denote the size of the associated hospital claim. An actuary is using a model in which

$$
E(X)=5, E\left(X^{2}\right)=27.4, E(Y)=7, E\left(Y^{2}\right)=51.4, \operatorname{Var}(X+Y)=8
$$

Let $C_{1}=X+Y$ denote the size of the combined claims before the application of a 20% surcharge on the hospital portion of the claim, and let C_{2} denote the size of the combined claims after the application of that surcharge. Calculate $\operatorname{Cov}\left(C_{1}, C_{2}\right)$.
9. $\left(\mathbf{5 0 9 0}^{*}\right)$ Let $\left(Y_{1}, Y_{2}\right)$ have the joint pdf

$$
f\left(y_{1}, y_{2}\right)=2, \quad 0<y_{1}<1,0<y_{2}<1,0<y_{1}+y_{2}<1
$$

Find $\operatorname{Var}\left(Y_{1}+Y_{2}\right)$

