Homework 9

Due Thursday, April 4

1. The joint density function of Y_1 and Y_2 is

$$f(y_1, y_2) = y_1 + y_2, \quad 0 < y_1 < 1, \ 0 < y_2 < 1$$

Find $E(Y_1)$ and $E(Y_2)$.

2. Let (Y_1, Y_2) have the joint pdf

$$f(y_1, y_2) = 4y_1y_2, \quad 0 < y_1 < 1, \ 0 < y_2 < 1$$

Find

- (a) $E(Y_1)$
- (b) $\operatorname{Var}(Y_1)$
- (c) $E(Y_1 Y_2)$
- 3. If Y_1 and Y_2 have joint density function

$$f(y_1, y_2) = \frac{1}{y_2}, \quad 0 < y_1 < y_2 < 1$$

find

- (a) $E(Y_1Y_2)$
- (b) $E(Y_1)$
- (c) $E(Y_2)$
- (d) $Cov(Y_1, Y_2)$.
- 4. Let (Y_1, Y_2) have the joint pdf

$$f(y_1, y_2) = 1, \quad 0 < y_1 < 2, \ 0 < y_2 < 1, \ 2y_2 < y_1.$$

Find $E(Y_1 - Y_2)$.

5. Let Y_1 and Y_2 have the joint probability density function given by

$$f(y_1, y_2) = 6(1 - y_2), \quad 0 \le y_1 \le y_2 \le 1$$

- (a) Show that $Cov(Y_1, Y_2) = 1/40$
- (b) Find $\operatorname{Var}(Y_1 3Y_2)$

- 6. If Y_1 and Y_2 are random variables, and a and b are constants, show that
 - (a) $Cov(Y_1, Y_2) = Cov(Y_2, Y_1)$
 - (b) $Cov(aY_1, Y_2) = aCov(Y_1, Y_2)$
 - (c) $\operatorname{Cov}(aY_1, bY_2) = ab\operatorname{Cov}(Y_1, Y_2)$
 - (d) $Cov(aY_1, Y_1 + Y_2) = aVar(Y_1) + aCov(Y_1, Y_2)$
 - (e) $\operatorname{Cov}(aY_1 + bY_2, Y_1 + Y_2) = a\operatorname{Var}(Y_1) + b\operatorname{Var}(Y_2) + (a+b)\operatorname{Cov}(Y_1, Y_2)$
- 7. An insurance policy pays a total medical benefit consisting of two parts for each claim. Let X represent the part of the benefit that is paid to the surgeon, and let Y represent the part that is paid to the hospital. The variance of X is 5,000, the variance of Y is 10,000, and the variance of the total benefit, X + Y, is 17,000. Due to increasing medical costs, the company that issues the policy decides to increase X by a flat amount of 100 per claim and to increase Y by 10% per claim. Calculate the variance of the total benefit after these revisions have been made.
- 8. (5090^*) Let X denote the size of a surgical claim and let Y denote the size of the associated hospital claim. An actuary is using a model in which

$$E(X) = 5, E(X^2) = 27.4, E(Y) = 7, E(Y^2) = 51.4, Var(X + Y) = 8$$

Let $C_1 = X + Y$ denote the size of the combined claims before the application of a 20% surcharge on the hospital portion of the claim, and let C_2 denote the size of the combined claims after the application of that surcharge. Calculate $Cov(C_1, C_2)$.

9. (5090*) Let (Y_1, Y_2) have the joint pdf

 $f(y_1, y_2) = 2, \quad 0 < y_1 < 1, \ 0 < y_2 < 1, \ 0 < y_1 + y_2 < 1$

Find $\operatorname{Var}(Y_1 + Y_2)$