Homework 10

Due Thursday, April 18

1. Let Y_{1} and Y_{2} have the joint probability density function given by

$$
f\left(y_{1}, y_{2}\right)=\frac{1}{y_{2}}, \quad 0<y_{1}<y_{2}<1
$$

Find $E\left(Y_{1} \mid Y_{2}=y_{2}\right)$.
2. Let Y_{1} and Y_{2} have the joint probability density function given by

$$
f\left(y_{1}, y_{2}\right)=6\left(1-y_{2}\right), \quad 0 \leq y_{1} \leq y_{2} \leq 1
$$

Find $E\left(Y_{1} \mid Y_{2}=y_{2}\right)$.
3. The joint density of Y_{1} and Y_{2} is given by

$$
f\left(y_{1}, y_{2}\right)=\frac{e^{-y_{2}}}{y_{2}}, \quad 0<y_{1}<y_{2}<\infty
$$

Compute $E\left(Y_{1}^{3} \mid Y_{2}=y_{2}\right)$.
4. Show that, if Y_{1} and Y_{2} are independent, then

$$
E\left(Y_{1} \mid Y_{2}=y_{2}\right)=E\left(Y_{1}\right)
$$

for all y_{2}.
5. If $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$ are iid exponential random variables with the parameter β, compute

$$
P\left(\min \left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}\right)>a\right)
$$

6. Let Y_{1}, \ldots, Y_{n} be iid random variables, each with pdf

$$
f_{Y}(y)=e^{-(y-\theta)}, \quad y>\theta
$$

Find the pdf of $Y_{(1)}=\min \left\{Y_{1}, \ldots, Y_{n}\right\}$.
7. Consider a sample of size 5 from a uniform distribution over $(0,1)$. Compute the probability that the median is in the interval $(1 / 4,3 / 4)$.
8. Let Y_{1}, \ldots, Y_{n} be iid Uniform $(0, \theta)$. Find the pdf of $Y_{(k)}$, and show that it follows a beta distribution if $\theta=1$.
9. (5090*) Suppose that $Y_{2} \mid Y_{1} \sim \operatorname{Poisson}\left(Y_{1}\right)$ and $Y_{1} \sim \operatorname{Gamma}(\alpha, \beta)$, so that

$$
P\left(Y_{2}=y_{2} \mid Y_{1}=y_{1}\right)=\frac{e^{-y_{1}} y_{1}^{y_{2}}}{y_{2}!}, \quad y_{2}=0,1,2, \ldots
$$

and that

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{y_{1}^{\alpha-1} e^{-y_{1} / \beta}}{\Gamma(\alpha) \beta^{\alpha}}, \quad y_{1}>0
$$

(a) Find $E\left(Y_{2}\right)$ and $\operatorname{Var}\left(Y_{2}\right)$ (no need to find $f_{Y_{2}}\left(y_{2}\right)$ for this).
(b) Assuming that we can write $f\left(y_{2} \mid y_{1}\right)=P\left(Y_{2}=y_{2} \mid Y_{1}=y_{1}\right)$, find $f\left(y_{1}, y_{2}\right)$ and $f\left(y_{1} \mid y_{2}\right)$.

For the below problems, you will need to use the formula for the joint pdf of $\left(Y_{(j)}, Y_{(k)}\right)$

$$
\begin{aligned}
& f_{Y_{(j)}, Y_{(k)}}\left(y_{j}, y_{k}\right) \\
= & \frac{n!}{(j-1)!(k-1-j)!(n-k)!}\left[F_{Y}\left(y_{j}\right)\right]^{j-1}\left[F_{Y}\left(y_{k}\right)-F_{Y}\left(y_{j}\right)\right]^{k-1-j}\left[1-F_{Y}\left(y_{k}\right)\right]^{n-k} f_{Y}\left(y_{j}\right) f_{Y}\left(y_{k}\right)
\end{aligned}
$$

where $y_{j}<y_{k}$ (compare with WMS formula on page 337).
10. (5090*) Suppose that Y_{1}, \ldots, Y_{n} are iid Uniform $(0, \theta)$. Find the joint pdf of $\left(Y_{(1)}, Y_{(n)}\right)$
11. (5090*) Let Y_{1} and Y_{2} be iid Uniform $(0,1)$. Find $P\left(2 Y_{(1)}<Y_{(2)}\right)$.

