Quiz Solution

1. In this case, there are six possibilities:
$(2 W, 2 B),(2 W, 2 R),(2 W, 2 G),(2 B, 2 R),(2 B, 2 G),(2 R, 2 G)$
So the desired probability is

$$
\frac{\binom{4}{2}\binom{2}{2}+\binom{4}{2}\binom{6}{2}+\binom{4}{2}\binom{3}{2}+\binom{2}{2}\binom{6}{2}+\binom{2}{2}\binom{3}{2}+\binom{6}{2}\binom{3}{2}}{\binom{15}{4}}
$$

2. Since

$$
\begin{aligned}
A & =\{\text { sum of the throws equals } 4\}=\{(1,3),(2,2),(3,1)\} \\
B & =\{\text { at least one of the throws show a } 3\} \\
& =\{(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3),(3,5),(5,3),(3,6),(6,3)\}
\end{aligned}
$$

and

$$
A \cap B=\{(1,3),(3,1)\}
$$

we see that

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{2 / 36}{11 / 36}=\frac{2}{11}
$$

