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• (Cramér-Rao Inequality, general case) Let Y = (Y1, . . . , Yn) be a random vector, with the
joint density fY(y) = fY(y1, . . . , yn). Let θ̂ be an estimator of θ. Then the Cramér-Rao
inequality is given by

Var(θ̂) ≥

(
∂
∂θE(θ̂)

)2
E
((

∂
∂θ ln fY(Y)

)2)
– If the components of Y = (Y1, . . . , Yn) consist of discrete random variables, we may

replace fY(y) by pY(y) = P (Y = y).

– The right-hand side is called the Cramér-Rao Lower Bound.

– The denominator of the right-hand side

I(θ) = E

((
∂

∂θ
ln fY(Y)

)2
)

is called the Fisher Information.

• (Cramér-Rao Inequality, iid case) Now, if Y1, . . . , Yn are iid random variables, each with
density fY (y). Let θ̂ be an estimator of θ. Then the Cramér-Rao inequality becomes

Var(θ̂) ≥

(
∂
∂θE(θ̂)

)2
nE
((

∂
∂θ ln fY (Y )

)2)
– If the Y ’s are discrete, we may replace fY (y) by pY (y) = P (Y = y).

– Note now that the Fisher Information becomes

I(θ) = nE

((
∂

∂θ
ln fY (Y )

)2
)

– This form has an advantage over the general case in that we deal with a univariate
density fY (y) instead of the joint density.

• (Cramér-Rao Inequality, iid case, exponential family) If Y1, . . . , Yn are iid random variables,
each with pdf fY (y) that belongs to an exponential family. Let θ̂ be an estimator of θ. Then
the Cramér-Rao inequality is now

Var(θ̂) ≥

(
∂
∂θE(θ̂)

)2
−nE

(
∂2

∂θ2
ln fY (Y )

)
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– Again, we may replace fY (y) by pY (y) = P (Y = y) if the Y ’s are discrete.

– The Fisher Information is now

I(θ) = −nE
(
∂2

∂θ2
ln fY (Y )

)
– This form has a major advantage in that it is always easier to deal with the second

derivative over squaring then taking the expectation.

• (Cramér-Rao Inequality, unbiased case) In all previous cases, if θ̂ is unbiased for θ, then since
E(θ̂) = θ, it follows that (

∂

∂θ
E(θ̂)

)2

=

(
∂

∂θ
θ

)2

= 12 = 1

and hence

Var(θ̂) ≥

(
∂
∂θE(θ̂)

)2
I(θ)

=
1

I(θ)
= [I(θ)]−1

• Efficiency If Var(θ̂) attains the Cramér-Rao Lower Bound, then θ̂ is called the efficient
estimator of θ.

• Some Examples (Exercise 9.8, page 448 of WMS)

– Suppose that Y1, . . . , Yn are iid N(µ, σ2) random variables. Each Y has the pdf

fY (y) =
1√
2πσ

exp

(
−(y − µ)2

2σ2

)
, −∞ < y <∞

We have already seen that Y ∼ N(µ, σ2) belongs to an exponential family. To show that
µ̂ = Y is an efficient estimator of µ, we first note that E(µ̂) = E(Y ) = µ so that µ̂ is an
unbiased estimator of µ. Now, Var(µ̂) ≥ [I(µ)]−1, and the Fisher Information is

I(µ) = −nE
(
∂2

∂µ2
ln fY (Y )

)
= −nE

(
∂2

∂µ2
ln

[
1√
2πσ

exp

(
−(Y − µ)2

2σ2

)])
= −nE

(
∂2

∂µ2

[
ln

(
1√
2πσ

)
−
(

(Y − µ)2

2σ2

)])
= −nE

(
∂

∂µ

(
2(Y − µ)

2σ2

))
= −nE

(
−1

σ2

)
=

n

σ2

and hence the Cramér-Rao Lower Bound is

[I(µ)]−1 =
[ n
σ2

]−1
=
σ2

n

Since

Var(µ̂) = Var(Y ) =
σ2

n
we have that

Var(µ̂) = [I(µ)]−1

so that Var(µ̂) attains the Cramér-Rao Lower Bound; therefore, µ̂ = Y is the efficient
estimator of µ.
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– Suppose that Y1, . . . , Yn are iid Poisson(λ) random variables, where each Y has the
probability function

pY (y) = P (Y = y) =
e−λλy

y!
, y = 0, 1, . . .

We have seen that Y ∼ Poisson(λ) belongs to an exponential family. We will show that
λ̂ = Y is an efficient estimator of λ. Again, E(λ̂) = E(Y ) = λ so that λ̂ is an unbiased
estimator of λ. Now, the Fisher Information will be given by

I(λ) = −nE
(
∂2

∂λ2
ln pY (Y )

)
= −nE

(
∂2

∂λ2
ln

[
e−λλY

Y !

])
= −nE

(
∂2

∂λ2
(−λ+ Y lnλ− ln(Y !))

)
= −nE

(
∂

∂λ

(
−1 +

Y

λ

))
= −nE

(
−Y
λ2

)
=

n

λ2
E(Y ) =

nλ

λ2
=
n

λ

and hence the Cramér-Rao Lower Bound is

[I(λ)]−1 =
[n
λ

]−1
=
λ

n

but since

Var(λ̂) = Var(Y ) =
λ

n

we have that
Var(λ̂) = [I(λ)]−1

so that Var(λ̂) attains the Cramér-Rao Lower Bound; therefore, λ̂ = Y is the efficient
estimator of λ.
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