Note on Delta Method

February 27, 2024

- (Delta Method) Let Y_{n} be a sequence of random variables that satisfies

$$
\frac{\sqrt{n}\left(Y_{n}-\theta\right)}{\eta} \xrightarrow{d} N(0,1) \quad \text { or equivalently, } \quad \sqrt{n}\left(Y_{n}-\theta\right) \xrightarrow{d} N\left(0, \eta^{2}\right)
$$

If there is a function g such that $g^{\prime}(\theta) \neq 0$, then

$$
\sqrt{n}\left(g\left(Y_{n}\right)-g(\theta)\right) \xrightarrow{d} N\left(0, \eta^{2}\left[g^{\prime}(\theta)\right]^{2}\right)
$$

- Remark: It is maybe easier to let $\theta=\mu$ and $\eta=\sigma$, so that the result looks like

$$
\sqrt{n}\left(Y_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right) \Longrightarrow \sqrt{n}\left(g\left(Y_{n}\right)-g(\mu)\right) \xrightarrow{d} N\left(0, \sigma^{2}\left[g^{\prime}(\mu)\right]^{2}\right)
$$

- Partial proof: Consider the Taylor series expansion of $g\left(Y_{n}\right)$ about θ, given by

$$
g\left(Y_{n}\right)=g(\theta)+g^{\prime}(\theta)\left(Y_{n}-\theta\right)+R_{n}
$$

where the R_{n} is the remainder term such that $\sqrt{n} R_{n} \xrightarrow{p} 0$ as $n \rightarrow \infty$. Multiplying both sides by \sqrt{n} and rearranging terms, we have

$$
\sqrt{n}\left(g\left(Y_{n}\right)-g(\theta)\right)=g^{\prime}(\theta) \sqrt{n}\left(Y_{n}-\theta\right)+\sqrt{n} R_{n}
$$

Apply $\sqrt{n}\left(Y_{n}-\theta\right) \xrightarrow{d} N\left(0, \eta^{2}\right)$ along with $\sqrt{n} R_{n} \xrightarrow{p} 0$ to obtain the desired result.

- For example, if Y_{1}, \ldots, Y_{n} are iid with random variables with $E\left(Y_{i}\right)=\mu$ and $\operatorname{Var}\left(Y_{i}\right)=$ $\sigma^{2}<\infty$, then by CLT, $\sqrt{n}\left(\bar{Y}_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$. If we want the limiting distribution of $\sqrt{n}\left(\bar{Y}_{n}^{2}-\mu^{2}\right)$, then we let $g(\mu)=\mu^{2}$ and use the Delta Method to conclude that

$$
\sqrt{n}\left(\bar{Y}_{n}^{2}-\mu^{2}\right)=\sqrt{n}\left(g\left(Y_{n}\right)-g(\mu)\right) \xrightarrow{d} N\left(0, \sigma^{2}\left[g^{\prime}(\mu)\right]^{2}\right)=N\left(0, \sigma^{2}[2 \mu]^{2}\right)=N\left(0,4 \mu^{2} \sigma^{2}\right)
$$

- (Second-Order Delta Method) Let Y_{n} be a sequence of random variables that satisfies

$$
\sqrt{n}\left(Y_{n}-\theta\right) \xrightarrow{d} N\left(0, \eta^{2}\right) .
$$

If there is a function g such that $g^{\prime}(\theta)=0$ but $g^{\prime}(\theta) \neq 0$, then

$$
n\left[g\left(Y_{n}\right)-g(\theta)\right] \xrightarrow{d} \eta^{2} g^{\prime \prime}(\theta) \chi^{2}(1) / 2
$$

- Partial proof: Expand the Taylor series with an additional term,

$$
g\left(Y_{n}\right)=g(\theta)+g^{\prime}(\theta)\left(Y_{n}-\theta\right)+\frac{g^{\prime \prime}(\theta)}{2}\left(Y_{n}-\theta\right)^{2}+R_{n}^{*}
$$

where the R_{n}^{*} is the remainder term such that $n R_{n}^{*} \xrightarrow{p} 0$ as $n \rightarrow \infty$. Since $g^{\prime}(\theta)=0$, multiplying by n on both sides rearranging the terms, we obtain

$$
n\left[g\left(Y_{n}\right)-g(\theta)\right]=\frac{g^{\prime \prime}(\theta)}{2} n\left(Y_{n}-\theta\right)^{2}+n R_{n}^{*}
$$

Now, since $\sqrt{n}\left(Y_{n}-\theta\right) \xrightarrow{d} N\left(0, \eta^{2}\right)$ by assumption, it follows that

$$
\frac{\sqrt{n}\left(Y_{n}-\theta\right)}{\eta} \xrightarrow{d} N(0,1) \Longrightarrow \frac{n\left(Y_{n}-\theta\right)^{2}}{\eta^{2}} \xrightarrow{d} \chi^{2}(1)
$$

i.e., $n\left(Y_{n}-\theta\right)^{2} \xrightarrow{d} \eta^{2} \chi^{2}(1)$. Use this fact, along with $n R_{n}^{*} \xrightarrow{p} 0$, to obtain the desired result.

- (Multivariate Delta Method) Suppose that \mathbf{Y}_{n} is a sequence of random vectors that satisfies

$$
\sqrt{n}\left(\mathbf{Y}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

Then if $\nabla g(\boldsymbol{\theta}) \neq \mathbf{0}$,

$$
\left.\sqrt{n}\left(g\left(\mathbf{Y}_{n}\right)-g(\boldsymbol{\theta})\right) \xrightarrow{d} N(\mathbf{0},[\nabla g(\boldsymbol{\theta}))]^{T} \boldsymbol{\Sigma}[\nabla g(\boldsymbol{\theta})]\right)
$$

