Exam 2 Solution

1. There are many ways to solve this problem. One solution is to start with $Y \sim \operatorname{Uniform}(\theta, \theta+1)$ which implies that $E(Y)=\theta+1 / 2$ and that $\operatorname{Var}(Y)=1 / 12$. Then

$$
E(\bar{Y})=E(Y)=\theta+1 / 2 \Longrightarrow E(\hat{\theta})=E(\bar{Y}-1 / 2)=\theta
$$

so that $\hat{\theta}$ is an unbiased estimator of θ. Hence, we can invoke Theorem 9.2, with

$$
\operatorname{Var}(\hat{\theta})=\operatorname{Var}(\bar{Y}-1 / 2)=\operatorname{Var}(\bar{Y})=\frac{\operatorname{Var}(Y)}{n}=\frac{1}{12 n} \rightarrow 0
$$

as $n \rightarrow \infty$, to conclude that $\hat{\theta}$ is a consistent estimator of θ.
2. First, we obtain the likelihood function

$$
L(\theta)=\prod_{i=1}^{n} P\left(Y_{i}=y_{i}\right)=\prod_{i=1}^{n}\left[(1-\theta)^{y_{i}-1} \theta\right]=(1-\theta)^{\sum_{i=1}^{n} y_{i}-n} \theta^{n}
$$

then

$$
\ln L(\theta)=\left(\sum_{i=1}^{n} y_{i}-n\right) \ln (1-\theta)+n \ln \theta
$$

and setting

$$
\frac{d}{d \theta} \ln L(\theta)=-\frac{\left(\sum_{i=1}^{n} y_{i}-n\right)}{(1-\theta)}+\frac{n}{\theta}=0
$$

and solving for θ, we find that $\theta=n / \sum_{i=1}^{n} y_{i}$, or

$$
\hat{\theta}_{M L E}=\frac{n}{\sum_{i=1}^{n} Y_{i}}=\frac{1}{\bar{Y}}
$$

3. (a) We see that

$$
L(\theta)=\prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}\right)=\prod_{i=1}^{n}\left[(\theta+1) y_{i}^{\theta}\right]=(\theta+1)^{n} \prod_{i=1}^{n} y_{i}^{\theta}=(\theta+1)^{n}\left(\prod_{i=1}^{n} y_{i}\right)^{\theta}=g\left(\prod_{i=1}^{n} y_{i}, \theta\right) h\left(y_{1}, \ldots, y_{n}\right)
$$

so that $\left(\prod_{i=1}^{n} Y_{i}\right)$ is a sufficient statistic for θ by the Factorization Theorem.
(b) We need to set

$$
\begin{aligned}
E(Y) & =\int y f_{Y}(y) d y=\int_{0}^{1} y(\theta+1) y^{\theta} d y=\int_{0}^{1}(\theta+1) y^{\theta+1} d y=\left.\frac{(\theta+1)}{(\theta+2)} y^{\theta+2}\right|_{0} ^{1}=\frac{(\theta+1)}{(\theta+2)} \\
& =\bar{Y}
\end{aligned}
$$

and solving for θ, we obtain

$$
\hat{\theta}=\frac{2 \bar{Y}-1}{1-\bar{Y}}
$$

(c) (Bonus) First, we have from part (a) that

$$
L(\theta)=(\theta+1)^{n} \prod_{i=1}^{n} y_{i}^{\theta}
$$

so that

$$
\ln L(\theta)=n \ln (\theta+1)+\ln \prod_{i=1}^{n} y_{i}^{\theta}=n \ln (\theta+1)+\sum_{i=1}^{n} \ln y_{i}^{\theta}=n \ln (\theta+1)+\theta \sum_{i=1}^{n} \ln y_{i}
$$

and by letting

$$
\frac{d}{d \theta} \ln L(\theta)=\frac{n}{(\theta+1)}+\sum_{i=1}^{n} \ln y_{i}=0
$$

and solving for θ, we obtain $\theta=-1-n / \sum_{i=1}^{n} \ln y_{i}$. Hence,

$$
\hat{\theta}_{M L E}=-1-\frac{n}{\sum_{i=1}^{n} \ln Y_{i}}
$$

