Note on Exponential Family

January 30, 2024

- A distribution with a random variable Y with a parameter θ is said to belong to an exponential family if $f_{Y}(y)$ or $P(Y=y)$ can be written as

$$
h(y) c(\theta) \exp (w(\theta) t(y))
$$

- For example, if $Y \sim \operatorname{Exponential}(\theta)$, then Y belongs to an exponential family since

$$
f_{Y}(y)=\frac{1}{\theta} e^{-y / \theta}=\frac{1}{\theta} \exp \left(-\frac{1}{\theta} y\right)=h(y) c(\theta) \exp (w(\theta) t(y)), \quad y>0
$$

where

$$
h(y)=1, \quad c(\theta)=\frac{1}{\theta}, \quad w(\theta)=-\frac{1}{\theta}, \quad t(y)=y
$$

- For another example, if $Y \sim \operatorname{Binomial}(n, \theta)$ (with n fixed), then

$$
\begin{aligned}
P(Y=y) & =\binom{n}{y} \theta^{y}(1-\theta)^{n-y}=\binom{n}{y}(1-\theta)^{n}\left(\frac{\theta}{1-\theta}\right)^{y} \\
& =\binom{n}{y}(1-\theta)^{n} \exp \left(y \ln \left(\frac{\theta}{1-\theta}\right)\right)=\binom{n}{y}(1-\theta)^{n} \exp \left(\ln \left(\frac{\theta}{1-\theta}\right) y\right) \\
& =h(y) c(\theta) \exp (w(\theta) t(y)), \quad y=0,1, \ldots, n
\end{aligned}
$$

where

$$
h(y)=\binom{n}{y}, \quad c(\theta)=(1-\theta)^{n}, \quad w(\theta)=\ln \left(\frac{\theta}{1-\theta}\right), \quad t(y)=y
$$

- If a random variable Y has a distribution with multiple parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$, then Y belongs to an exponential family if $f_{Y}(y)$ or $P(Y=y)$ can be written as

$$
h(y) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(y)\right)
$$

- For example, if $Y \sim N\left(\mu, \sigma^{2}\right)$, then by letting $\boldsymbol{\theta}=\left(\mu, \sigma^{2}\right)$, we have

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{y^{2}}{2 \sigma^{2}}+\frac{\mu y}{\sigma^{2}}\right) \\
& =h(y) c(\boldsymbol{\theta}) \exp \left(w_{1}(\boldsymbol{\theta}) t_{1}(y)+w_{2}(\boldsymbol{\theta}) t_{2}(y)\right), \quad-\infty<y<\infty
\end{aligned}
$$

where

$$
h(y)=1, c(\boldsymbol{\theta})=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right), w_{1}(\boldsymbol{\theta})=\frac{-1}{2 \sigma^{2}}, t_{1}(y)=y^{2}, w_{2}(\boldsymbol{\theta})=\frac{\mu}{\sigma^{2}}, t_{2}(y)=y
$$

- Not all distributions belong to an exponential family. For example, if $Y \sim \operatorname{Uniform}(0, \theta)$, then

$$
f_{Y}(y)=\frac{1}{\theta}, \quad 0<y<\theta
$$

We would like to rewrite the pdf $f_{Y}(y)$ to incorporate the region $0<y<\theta$. For this task, we introduce an indicator function of set A, defined as

$$
1_{A}(y)= \begin{cases}1 & \text { if } y \in A \\ 0 & \text { if } y \notin A\end{cases}
$$

Using the definition, it is often convenient to rewrite in the form

$$
1_{A}(y)=1_{\{y \in A\}}
$$

So, for the pdf of $Y \sim \operatorname{Uniform}(0, \theta)$, we can write

$$
f_{Y}(y)=\frac{1}{\theta} 1_{(0, \theta)}(y)=\frac{1}{\theta} 1_{\{0<y<\theta\}}
$$

However, $f_{Y}(y)$ above cannot be written in the form $h(y) c(\theta) \exp (w(\theta) t(y))$, and therefore $Y \sim \operatorname{Uniform}(0, \theta)$ does not belong to an exponential family.

