Homework 2

Due Tuesday, January 30

1. Suppose that $\left(Y_{1}, Y_{2}\right)$ have the joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=e^{-y_{1}}, 0<y_{2}<y_{1}<\infty$. Find the pdf of $U=Y_{1}-Y_{2}$ using the cdf method.
2. Suppose that Y_{1} and Y_{2} are independent, with densities $f_{Y_{1}}\left(y_{1}\right)=6 y_{1}\left(1-y_{1}\right), 0<y_{1}<1$, and $f_{Y_{2}}\left(y_{2}\right)=3 y_{2}^{2}, 0<y_{2}<1$, respectively. Find the pdf of $U=Y_{1} Y_{2}$ using the cdf method.
3. Suppose that a machine has two independent components and that each component has a lifetime governed by the exponential distribution with mean 1 . Find the pdf for the average lifetime of the two components, using the cdf method.
4. Y_{1} and Y_{2} have joint density function

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{y_{1}^{2} y_{2}^{2}}, \quad y_{1} \geq 1, y_{2} \geq 1
$$

Compute the joint density function of $U_{1}=Y_{1} Y_{2}$ and $U_{2}=Y_{1} / Y_{2}$.
5. If Y_{1} and Y_{2} are independent and identically distributed uniform random variables on $(0,1)$, compute the joint density of $U_{1}=Y_{1}+Y_{2}, U_{2}=Y_{1} / Y_{2}$.
6. If Y_{1} and Y_{2} are independent and identically distributed exponential random variables with $\beta=1$, compute the joint density of $U_{1}=Y_{1}, U_{2}=Y_{1} / Y_{2}$.
7. If Y_{1} and Y_{2} are independent exponential random variables, each having parameter $\beta=1 / \lambda$, find the joint density function of $U_{1}=Y_{1}+Y_{2}$ and $U_{2}=e^{Y_{1}}$.
8. Let Y_{1} and Y_{2} be independent random variables with pdfs $f_{Y_{1}}\left(y_{1}\right),-\infty<y_{1}<\infty$, and $f_{Y_{2}}\left(y_{2}\right),-\infty<y_{2}<\infty$, respectively. Let $U_{1}=Y_{1}+Y_{2}$ and $U_{2}=Y_{2}$. Show that the pdf of U_{1} is given by

$$
f_{U_{1}}\left(u_{1}\right)=\int f_{Y_{1}}\left(u_{1}-u_{2}\right) f_{Y_{2}}\left(u_{2}\right) d u_{2}
$$

9. Repeat Problem 3 using the pdf (Jacobian) method.
10. If Y has the pdf $f_{Y}(y)=y e^{-y}, y>0$, show that

$$
M_{Y}(t)=E\left(e^{t Y}\right)=\frac{1}{(1-t)^{2}}=(1-t)^{-2}
$$

by performing the integration.
11. Suppose that Y has the pdf

$$
f_{Y}(y)= \begin{cases}1+y, & -1<y<0 \\ 1-y, & 0 \leq y<1\end{cases}
$$

Find the mgf of Y.
12. If $M_{Y}(t)=e^{t^{2} / 2}$, find $E\left(Y^{3}\right)$ by differentiating the mgf of Y.

