Homework 3

Due Tuesday, February 6

1. Suppose that Y_{1}, Y_{2}, and Y_{3} are iid exponential random variables with $\beta=1$. Show that $U=Y_{1}+Y_{2}+Y_{3}$ follows $\operatorname{Gamma}(3,1)$ distribution, using the cdf method.
2. Repeat Problem 1, using the pdf (Jacobian) method.
3. If Y_{1}, Y_{2}, and Y_{3} are iid exponential random variables with $\beta=1$, derive the joint pdf of $U_{1}=Y_{1}+Y_{2}, U_{2}=Y_{1}+Y_{3}, U_{3}=Y_{2}+Y_{3}$.
4. Let Y be a binomial random variable with n trials and probability of success given by p. Show, using the mgf method, that $n-Y$ is a binomial random variable with n trials and probability of success given by $1-p$.
5. Suppose that Y has a gamma distribution with $\alpha=n / 2$ and $\beta=m$ for some positive integer n and m. Use the mgf method to show that $W=2 Y / m$ has a χ^{2} distribution with n degrees of freedom, $\chi^{2}(n)$ (recall that $\chi^{2}(\nu)=\operatorname{Gamma}(\nu / 2,2)$).
6. If mgf of Y is given by

$$
M_{Y}(t)=\left(\frac{1}{4}+\frac{3}{4} e^{t}\right)^{5}
$$

calculate $P(Y \leq 2)$.
7. Let Y_{1} and Y_{2} be independent Poisson random variables with means λ_{1} and λ_{2}, respectively. Find the distribution of $U=Y_{1}+Y_{2}$ using the mgf method.
8. If $Y_{1} \sim \operatorname{Binomial}(5,3 / 4)$ and $Y_{2} \sim \operatorname{Poisson}(2)$, and Y_{1} and Y_{2} are independent, find the joint mgf of Y_{1} and Y_{2}, i.e., $M_{Y_{1}+Y_{2}}(t)$.
9. Let Y_{1} and Y_{2} be independent standard normal random variables. Find the distribution of $U=Y_{1}^{2}+Y_{2}^{2}$ using the mgf method. (HINT: You may use the result of Example 6.11).
10. Suppose that Y_{1}, \ldots, Y_{n} are iid random variables, each Y_{i} having a probability function

$$
P(Y=y)=p^{y}(1-p)^{1-y}, \quad y=0,1
$$

(a) Show that $M_{Y}(t)=1-p+e^{t} p$.
(b) Show that $Y_{1}+\cdots+Y_{n} \sim \operatorname{Binomial}(n, p)$.
11. Suppose that Y_{1}, \ldots, Y_{n} are iid $N\left(\mu, \sigma^{2}\right)$ random variables. Compute the mgf of

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

and determine the distribution of \bar{Y}.
12. (5880*) Let $Y_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right), Y_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right), Y_{3} \sim \operatorname{Gamma}\left(\alpha_{3}, \beta\right)$ be independent. If $U=c_{1} Y_{1}+c_{2} Y 2+c_{3} Y_{3}$, what condition must we impose on constants c_{1}, c_{2}, c_{3} to ensure that U has a gamma distribution with the first parameter $\alpha_{1}+\alpha_{2}+\alpha_{3}$?
13. (5880*) Show that $Y \sim \operatorname{Poisson}(\theta)$ belongs to an exponential family.
14. (5880*) Show that (a) $Y \sim N(\theta, 1)$ and $(\mathrm{b}) Y \sim \operatorname{Beta}(2, \theta)$ each belong to an exponential family.
15. (5880*) Show that $Y \sim \operatorname{Beta}(\alpha, \beta)$ belongs to an exponential family.

