Homework 4

Due Tuesday, February 13

1. Suppose that $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent random samples (independence between X_{i} and Y_{j} as well as within X_{i} and within $\left.Y_{j}\right)$, with the variables $X_{i} \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and the variables $Y_{j} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. The difference between the sample means, $\bar{X}-\bar{Y}$, is then itself normally distributed.
(a) Find $E(\bar{X}-\bar{Y})$
(b) Find $\operatorname{Var}(\bar{X}-\bar{Y})$
2. If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{iid} N\left(\mu, \sigma^{2}\right)$ and S^{2} is the sample variance, let $U=(n-1) S^{2} / \sigma^{2}$. Recalling the distribution of U, compute $\left.\frac{d}{d t} M_{U}(t)\right|_{t=0}$ to show that $E\left(S^{2}\right)=\sigma^{2}$.
3. If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{iid} N\left(\mu, \sigma^{2}\right)$ and S^{2} is the sample variance, find the moment generating function of S^{2}.
4. Show that

$$
\sum_{i=1}^{n}\left[\left(Y_{i}-\bar{Y}\right)(\bar{Y}-\mu)\right]=0
$$

(which proves that $\left.\sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}+n(\bar{Y}-\mu)^{2}+0\right)$.
5. Show that

$$
\left(Y_{1}-\bar{Y}\right)^{2}=\left[\sum_{i=2}^{n}\left(Y_{i}-\bar{Y}\right)\right]^{2}
$$

6. Show that

$$
S^{2}=\frac{1}{2 n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(Y_{i}-Y_{j}\right)^{2}
$$

(HINT: Work backwards, add and subtract \bar{Y}).
7. If Y has a t-distribution with n d.f., show that $Y^{2} \sim F(1, n)$. (No need to derive the pdf; just recall the composition of Y and see what Y^{2} looks like).
8. Let Y have the F distribution with m and n degrees of freedom (i.e., $Y \sim F(m, n)$). Find the distribution of $1 / Y$. (Again, no need to derive the pdf).
9. If Y has an exponential distribution with mean θ, show that $U=2 Y / \theta$ has a χ^{2} distribution with 2 df . Deduce that if X_{1} and X_{2} are independent exponential distributions with mean θ, then X_{1} / X_{2} follows an F-distribution (with what degrees of freedom?).
10. (5880*) If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim$ iid $N\left(\mu, \sigma^{2}\right)$, show that \bar{Y} and S^{2} are independent by following the steps below:
(a) Let $U_{1}=\bar{Y}, U_{2}=Y_{2}-\bar{Y}, U_{3}=Y_{3}-\bar{Y}, \ldots, U_{n}=Y_{n}-\bar{Y}$. Find the inverse transformation $Y_{i}, i=1, \ldots, n$, and show that the Jacobian $J=n$.
(b) Show that (hint: use Problem 5) the joint pdf of $\left(U_{1}, \ldots, U_{n}\right)$ is given by

$$
f_{U_{1}, \ldots, U_{n}}\left(u_{1}, \ldots, u_{n}\right)=n\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left[\frac{-1}{2 \sigma^{2}}\left(\left[\sum_{i=2}^{n} u_{i}\right]^{2}+\sum_{i=2} u_{i}^{2}\right)\right] \exp \left[\frac{-n}{2 \sigma^{2}}\left(u_{1}-\mu\right)^{2}\right]
$$

(c) Show that (hint: use part (b))

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{1}{n-1}\left(\left[\sum_{i=2}^{n} U_{i}\right]^{2}+\sum_{i=2}^{n} U_{i}^{2}\right)
$$

and deduce that \bar{Y} and S^{2} are independent.
11. (5880*) We derive the pdf of a t-distribution by following the steps below:
(a) Let $Y_{1} \sim N(0,1)$ and $Y_{2} \sim \chi^{2}(r)$ be independent, and let $U_{1}=Y_{1} / \sqrt{Y_{2} / r}$. By letting $U_{2}=Y_{2}$, show that the Jacobian is $J=\sqrt{u_{2} / r}$.
(b) Show that the joint pdf of $\left(U_{1}, U_{2}\right)$ is given by

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\frac{1}{\Gamma\left(\frac{r}{2}\right) 2^{\frac{r+1}{2}} \sqrt{\pi r}} u_{2}^{\frac{r+1}{2}-1} e^{-\frac{\left[1+\left(u_{1}^{2} / r\right)\right] u_{2}}{2}}, \quad-\infty<u_{1}<\infty, u_{2}>0
$$

(c) Show that the marginal density of U_{1} is given by

$$
f_{U_{1}}\left(u_{1}\right)=\frac{\Gamma\left(\frac{r+1}{2}\right)}{\Gamma\left(\frac{r}{2}\right) \sqrt{\pi r}} \frac{1}{\left[1+\left(u_{1}^{2} / r\right)\right]^{\frac{r+1}{2}}}, \quad-\infty<u_{1}<\infty
$$

which is the pdf of the t-distribution with r d.f. (as a hint, recall the form of the gamma pdf and use it to integrate over u_{2}).
12. (5880*) We derive the pdf of an F-distribution by following the steps below:
(a) Let $Y_{1} \sim \chi^{2}(m)$ and $Y_{2} \sim \chi^{2}(n)$ be independent, and let $U_{1}=Y_{1} / Y_{2}$ and $U_{2}=Y_{2}$. Show that the Jacobian is $J=u_{2}$.
(b) Show that the joint pdf of (U, V) is given by

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\frac{1}{\Gamma(m / 2) \Gamma(n / 2) 2^{(m+n) / 2}} u^{m / 2-1} u_{2}^{(m+n) / 2-1} e^{-\left(1+u_{1}\right) u_{2} / 2}, \quad u_{1}>0, u_{2}>0
$$

(c) Show that the marginal density of U_{1} is given by (again, recall the form of the gamma pdf and use it to integrate over u_{2})

$$
f_{U_{1}}\left(u_{1}\right)=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{u_{1}^{m / 2-1}}{(1+u)^{(m+n) / 2}}, \quad u_{1}>0
$$

and by letting $W=\left(Y_{1} / m\right) /\left(Y_{2} / n\right)$, deduce that $f_{W}(w)$ has the pdf of $F(m, n)$

$$
f_{W}(w)=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)}\left(\frac{m}{n}\right)^{m / 2} \frac{w^{m / 2-1}}{\left(1+\left(\frac{m}{n}\right) w\right)^{(m+n) / 2}}, \quad w>0 .
$$

