Homework 4

Due Tuesday, February 13

- 1. Suppose that $X_1, X_2, ..., X_m$ and $Y_1, Y_2, ..., Y_n$ are independent random samples (independence between X_i and Y_j as well as within X_i and within Y_j), with the variables $X_i \sim N(\mu_X, \sigma_X^2)$ and the variables $Y_j \sim N(\mu_Y, \sigma_Y^2)$. The difference between the sample means, $\overline{X} - \overline{Y}$, is then itself normally distributed.
 - (a) Find $E(\overline{X} \overline{Y})$
 - (b) Find $\operatorname{Var}(\overline{X} \overline{Y})$
- 2. If $Y_1, Y_2, ..., Y_n \sim \text{iid } N(\mu, \sigma^2)$ and S^2 is the sample variance, let $U = (n-1)S^2/\sigma^2$. Recalling the distribution of U, compute $\frac{d}{dt}M_U(t)\big|_{t=0}$ to show that $E(S^2) = \sigma^2$.
- 3. If $Y_1, Y_2, ..., Y_n \sim \text{iid } N(\mu, \sigma^2)$ and S^2 is the sample variance, find the moment generating function of S^2 .
- 4. Show that

$$\sum_{i=1}^{n} [(Y_i - \overline{Y})(\overline{Y} - \mu)] = 0$$

(which proves that $\sum_{i=1}^{n} (Y_i - \mu)^2 = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 + n(\overline{Y} - \mu)^2 + 0$).

5. Show that

$$(Y_1 - \overline{Y})^2 = \left[\sum_{i=2}^n (Y_i - \overline{Y})\right]^2$$

6. Show that

$$S^{2} = \frac{1}{2n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} (Y_{i} - Y_{j})^{2}$$

(HINT: Work backwards, add and subtract \overline{Y}).

- 7. If Y has a t-distribution with n d.f., show that $Y^2 \sim F(1, n)$. (No need to derive the pdf; just recall the composition of Y and see what Y^2 looks like).
- 8. Let Y have the F distribution with m and n degrees of freedom (i.e., $Y \sim F(m, n)$). Find the distribution of 1/Y. (Again, no need to derive the pdf).
- 9. If Y has an exponential distribution with mean θ , show that $U = 2Y/\theta$ has a χ^2 distribution with 2 df. Deduce that if X_1 and X_2 are independent exponential distributions with mean θ , then X_1/X_2 follows an F-distribution (with what degrees of freedom?).
- 10. (5880*) If $Y_1, Y_2, ..., Y_n \sim \text{iid } N(\mu, \sigma^2)$, show that \overline{Y} and S^2 are independent by following the steps below:

- (a) Let $U_1 = \overline{Y}, U_2 = Y_2 \overline{Y}, U_3 = Y_3 \overline{Y}, \dots, U_n = Y_n \overline{Y}$. Find the inverse transformation $Y_i, i = 1, \dots, n$, and show that the Jacobian J = n.
- (b) Show that (hint: use Problem 5) the joint pdf of (U_1, \ldots, U_n) is given by

$$f_{U_1,\dots,U_n}(u_1,\dots,u_n) = n\left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left[\frac{-1}{2\sigma^2}\left(\left[\sum_{i=2}^n u_i\right]^2 + \sum_{i=2}^n u_i^2\right)\right] \exp\left[\frac{-n}{2\sigma^2}(u_1-\mu)^2\right]$$

(c) Show that (hint: use part (b))

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} = \frac{1}{n-1} \left(\left[\sum_{i=2}^{n} U_{i} \right]^{2} + \sum_{i=2}^{n} U_{i}^{2} \right)$$

and deduce that \overline{Y} and S^2 are independent.

- 11. (5880^{*}) We derive the pdf of a *t*-distribution by following the steps below:
 - (a) Let $Y_1 \sim N(0,1)$ and $Y_2 \sim \chi^2(r)$ be independent, and let $U_1 = Y_1/\sqrt{Y_2/r}$. By letting $U_2 = Y_2$, show that the Jacobian is $J = \sqrt{u_2/r}$.
 - (b) Show that the joint pdf of (U_1, U_2) is given by

$$f_{U_1,U_2}(u_1, u_2) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r+1}{2}}\sqrt{\pi r}} u_2^{\frac{r+1}{2}-1} e^{-\frac{[1+(u_1^2/r)]u_2}{2}}, \quad -\infty < u_1 < \infty, \quad u_2 > 0$$

(c) Show that the marginal density of U_1 is given by

$$f_{U_1}(u_1) = \frac{\Gamma(\frac{r+1}{2})}{\Gamma(\frac{r}{2})\sqrt{\pi r}} \frac{1}{\left[1 + (u_1^2/r)\right]^{\frac{r+1}{2}}}, \quad -\infty < u_1 < \infty$$

which is the pdf of the *t*-distribution with r d.f. (as a hint, recall the form of the gamma pdf and use it to integrate over u_2).

- 12. (5880^{*}) We derive the pdf of an *F*-distribution by following the steps below:
 - (a) Let $Y_1 \sim \chi^2(m)$ and $Y_2 \sim \chi^2(n)$ be independent, and let $U_1 = Y_1/Y_2$ and $U_2 = Y_2$. Show that the Jacobian is $J = u_2$.
 - (b) Show that the joint pdf of (U, V) is given by

$$f_{U_1,U_2}(u_1,u_2) = \frac{1}{\Gamma(m/2)\Gamma(n/2)2^{(m+n)/2}} u^{m/2-1} u_2^{(m+n)/2-1} e^{-(1+u_1)u_2/2}, \quad u_1 > 0, u_2 > 0$$

(c) Show that the marginal density of U_1 is given by (again, recall the form of the gamma pdf and use it to integrate over u_2)

$$f_{U_1}(u_1) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \frac{u_1^{m/2-1}}{(1+u)^{(m+n)/2}}, \quad u_1 > 0$$

and by letting $W = (Y_1/m)/(Y_2/n)$, deduce that $f_W(w)$ has the pdf of F(m, n)

$$f_W(w) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{m/2} \frac{w^{m/2-1}}{\left(1+\left(\frac{m}{n}\right)w\right)^{(m+n)/2}}, \quad w > 0.$$