Homework 6

Due Tuesday, March 12

1. Let Y be a random variable and let $U=\ln Y$, with $E(U)=0$. Show that $E(Y) \geq 1$.
2. Show that $E(S) \leq \sigma$.
3. (a) Show that $|E(Y)| \leq E(|Y|)$. (HINT: You may assume that the absolute value function is convex).
(b) Use Cauchy-Schwarz inequality

$$
E(|X Y|) \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}
$$

and part (a) to show that

$$
\left|\operatorname{Cov}\left(Y_{1}, Y_{2}\right)\right| \leq \sqrt{\operatorname{Var}\left(Y_{1}\right)} \sqrt{\operatorname{Var}\left(Y_{2}\right)}
$$

(c) Use part (b) to conclude that the correlation ρ between two random variables Y_{1} and Y_{2} is always between -1 and 1 , i.e., $-1 \leq \rho \leq 1$.
4. Assume that $\operatorname{Var}\left(S^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that for any $\epsilon>0, P\left(\left|S^{2}-\sigma^{2}\right| \geq \epsilon\right) \rightarrow 0$ (and hence $S_{n}^{2} \rightarrow \sigma^{2}$ in probability) as $n \rightarrow \infty$.
5. Let $X_{1}, \ldots, X_{n} \sim \operatorname{iid} \operatorname{Binomial}(1, p)$, and let

$$
Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}
$$

(a) Show that $E\left(X_{i}^{k}\right)=p$ for any integer k.
(b) Show that $E\left(Y_{n}\right)=p$.
(c) Show that $Y_{n} \rightarrow p$ in probability.
6. Suppose that $Y \sim \operatorname{Poisson}(\lambda)$.
(a) Let $U=(Y-\lambda) / \sqrt{\lambda}$. Show that $M_{U}(t)=\exp \left(\lambda e^{t / \sqrt{\lambda}}-t \sqrt{\lambda}-\lambda\right)$.
(b) Show that $M_{U}(t) \rightarrow \exp \left(t^{2} / 2\right)$ as $\lambda \rightarrow \infty$ (HINT: Use $e^{a}=1+a+a^{2} / 2!+a^{3} / 3!+\cdots$ to expand $e^{t / \sqrt{\lambda}}$).
7. Let Y_{1}, Y_{2}, \ldots be a sequence of random variables with probability function

$$
P\left(Y_{n}=0\right)=1-\frac{1}{n} \quad \text { and } \quad P\left(Y_{n}=n^{2}\right)=\frac{1}{n}
$$

Show that $\lim _{n \rightarrow \infty} E\left(Y_{n}\right)=\infty$.
8. (5880*) Let $X_{1}, \ldots, X_{n} \sim$ iid Uniform $(0, \theta)$. Let $Y_{n}=n\left(\theta-X_{(n)}\right)$, where $X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Find the cdf of Y_{n}, and show that $Y_{n} \rightarrow Y$ in distribution, where $Y \sim \operatorname{Exponential}(\theta)$.
9. (5880*) Prove the central limit theorem (CLT). Specifically, if Y_{1}, \ldots, Y_{n} are iid with $E\left(Y_{i}\right)=$ μ and $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}<\infty$, then let

$$
U_{n}=\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}=\frac{\sum_{i=1}^{n} Y_{i}-n \mu}{\sqrt{n} \sigma}
$$

and show that

$$
U_{n} \rightarrow Z \sim N(0,1)
$$

in distribution (or equivalently, $\left.M_{U_{n}}(t) \rightarrow M_{Z}(t)\right)$ as $n \rightarrow \infty$, by following the steps below.
(a) We may assume that $\mu=E\left(Y_{i}\right)=0$, so that $U_{n}=\frac{\sum_{i=1}^{n} Y_{i}}{\sqrt{n} \sigma}$. Show that

$$
M_{U_{n}}(t)=\left(E\left[\exp \left(\frac{t}{\sqrt{n} \sigma} Y_{1}\right)\right]\right)^{n}=\left(M_{Y_{1}}\left(\frac{t}{\sqrt{n} \sigma}\right)\right)^{n}
$$

(b) Using the fact that $e^{a}=1+a+a^{2} / 2!+\cdots$, show that

$$
M_{Y_{1}}\left(\frac{t}{\sqrt{n} \sigma}\right)=E\left[\exp \left(\frac{t}{\sqrt{n} \sigma} Y_{1}\right)\right]=1+\frac{t^{2}}{2 n}+\cdots
$$

(c) Assume that the "..." terms are small, so that $M_{Y_{1}}\left(\frac{t}{\sqrt{n} \sigma}\right)=1+\frac{t^{2}}{2 n}$. Show that

$$
M_{U_{n}}(t) \rightarrow e^{t^{2} / 2}=M_{Z}(t) \quad\left(\text { where } M_{Z}(t) \text { is the mgf of } Z \sim N(0,1)\right)
$$

as $n \rightarrow \infty$, and thus proving that $U_{n} \rightarrow Z$ in distribution.
10. (5880*) Suppose that Y_{1}, \ldots, Y_{n} are iid random variables with $E\left(Y_{i}\right)=\mu \neq 0$ and $\operatorname{Var}\left(Y_{i}\right)=$ $\sigma^{2}<\infty$. Find the limiting distribution of $\sqrt{n}(1 / \bar{Y}-1 / \mu)$, i.e., find "?" if $\sqrt{n}(1 / \bar{Y}-1 / \mu) \xrightarrow{d}$?
11. (5880*) If $Y_{1}, \ldots, Y_{n} \sim$ iid $\operatorname{Exponential}(\theta)$ with $\theta>0$, find the limiting distribution of $\sqrt{n}\left(\bar{Y}^{2}-\theta^{2}\right)$.
12. (5880*) Suppose that X_{1}, \ldots, X_{n} are iid $\operatorname{Bernoulli}(p)$, and let $Y_{n}=\bar{X}$.
(a) Show that $\sqrt{n}\left(Y_{n}-p\right) \xrightarrow{d} N[0, p(1-p)]$.
(b) If $p \neq 1 / 2$, find the limiting distribution of $\sqrt{n}\left[Y_{n}\left(1-Y_{n}\right)-p(1-p)\right]$.
(c) If $p=1 / 2$, find the limiting distribution of $n\left[Y_{n}\left(1-Y_{n}\right)-1 / 4\right]$.

