Homework 7

Due Tuesday, March 26

1. Show that

$$
\operatorname{MSE}(\hat{\theta})=E\left[(\hat{\theta}-\theta)^{2}\right]=\operatorname{Var}(\hat{\theta})+[\operatorname{Bias}(\hat{\theta})]^{2}
$$

(HINT: Subtract and add $E(\hat{\theta})$ inside $E\left[(\hat{\theta}-\theta)^{2}\right]$ to start).
2. Suppose that Y_{1}, Y_{2}, Y_{3} denote a random sample from an exponential distribution with density function

$$
f_{Y}(y)=\frac{1}{\theta} e^{-y / \theta}, \quad y>0
$$

Consider the following five estimators of θ

$$
\hat{\theta}_{1}=Y_{1}, \quad \hat{\theta}_{2}=\frac{Y_{1}+Y_{2}}{2}, \quad \hat{\theta}_{3}=\frac{Y_{1}+2 Y_{2}}{3}, \quad \hat{\theta}_{4}=\min \left\{Y_{1}, Y_{2}, Y_{3}\right\}, \quad \hat{\theta}_{5}=\bar{Y}
$$

(a) Show that $E\left(\hat{\theta}_{4}\right)=\theta / 3$, and hence $\hat{\theta}_{4}$ is biased.
(b) Among the unbiased estimators, which has the smallest variance?
3. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be random sample whose density is given by

$$
f_{Y}(y)=\frac{\alpha y^{\alpha-1}}{\theta^{\alpha}}, \quad 0 \leq y \leq \theta
$$

where $\alpha>0$ is a known fixed value, but θ is unknown (fixed). Consider the estimator $\hat{\theta}=\max \left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$.
(a) Show that the cdf of Y is $F_{Y}(y)=(y / \theta)^{\alpha}, 0 \leq y \leq \theta$.
(b) Compute $E(\hat{\theta})$ to show that $\hat{\theta}$ is a biased estimator for θ.
(c) Find a multiple of $\hat{\theta}$ that is an unbiased estimator of θ.
4. If Y has a binomial distribution with parameters n and p, then $\hat{p}_{1}=Y / n$ is an unbiased estimator of p. Another estimator of p is $\hat{p}_{2}=(Y+1) /(n+2)$.
(a) Derive the bias of \hat{p}_{2}.
(b) Derive $\operatorname{MSE}\left(\hat{p}_{1}\right)$ and $\operatorname{MSE}\left(\hat{p}_{2}\right)$.
5. Let $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{iid} \operatorname{Uniform}(0, \theta)$. Consider $\hat{\theta}=Y_{(1)}=\min \left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$. Show that

$$
E(\hat{\theta})=\frac{\theta}{n+1} \quad \text { and } \quad \operatorname{Var}(\hat{\theta})=\frac{n \theta^{2}}{(n+1)^{2}(n+2)}
$$

Find an unbiased estimator of θ based on this result.
6. Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are iid with density function

$$
f_{Y}(y)=\frac{1}{\theta} e^{-y / \theta}, \quad y>0
$$

(a) Show that $\hat{\theta}_{1}=n Y_{(1)}$ is an unbiased estimator for θ, and find $\operatorname{MSE}\left(\hat{\theta}_{1}\right)$. (HINT: You may recognize the pdf of $Y_{(1)}$ and use its properties).
(b) Show that $\hat{\theta}_{2}=\bar{Y}$ is an unbiased estimators of θ.
(c) Find the efficiency of $\hat{\theta}_{1}$ relative to $\hat{\theta}_{2}$.
7. Let $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{iid} \operatorname{Uniform}(0, \theta)$. We have seen that

$$
\hat{\theta}_{1}=(n+1) Y_{(1)} \quad \text { and } \quad \hat{\theta}_{2}=\left(\frac{n+1}{n}\right) Y_{(n)}
$$

are unbiased estimators for θ.
(a) Find the efficiency of $\hat{\theta}_{1}$ relative to $\hat{\theta}_{2}$ (see Problem 5 and Example 9.1 on page 446 of textbook; you may state and use the results from there).
(b) Show that $\hat{\theta}_{2}$ is a consistent estimator for θ. Deduce that $Y_{(n)}$ is a consistent estimator of θ and also asymptotically unbiased estimator for θ.
8. If Y has a binomial distribution with parameters n and p, consider $\hat{p}=(Y+1) /(n+2)$ as an estimator of p. Is \hat{p} a consistent estimator of p ? Is \hat{p} an asymptotically unbiased estimator for p ?
9. Suppose that $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent random samples from population with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2} respectively (variances are finite). Show that $\bar{X}-\bar{Y}$ is a consistent estimator of $\mu_{1}-\mu_{2}$.
10. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid $\operatorname{Gamma}(\alpha, \beta)$. Show that \bar{Y} is a consistent estimator of $\alpha \beta$.
11. (5880*) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid $N\left(\mu, \sigma^{2}\right)$. Consider the following estimators of σ^{2}

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \quad \text { and } \quad \hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Find $\operatorname{MSE}\left(S^{2}\right)$ and $\operatorname{MSE}\left(\hat{\sigma}_{n}^{2}\right)$. (HINT: Since $(n-1) S^{2} / \sigma^{2} \sim \chi^{2}(n-1)$, use the property of the χ^{2} distribution to find the variance of S^{2}).
12. (5880*) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid random variables, each with pdf

$$
f_{Y}(y)=\left(\frac{2 y}{\theta}\right) e^{-y^{2} / \theta}, \quad y>0
$$

where $\theta>0$.
(a) Find the distribution of Y^{2}.
(b) Show that $W_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}$ is a consistent estimator for θ.
(The following two problems will require the independent reading of Cramér-Rao Inequality notes, on course webpage)
13. (5880*) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid random variables, each with pdf

$$
f_{Y}(y)=\theta y^{(\theta-1)}, \quad 0<y<1, \quad \theta>0
$$

(a) Show that Y belongs to an exponential family, and identify its components.
(b) Compute $E(Y)$.
(c) Compute the Fisher Information.
(d) Compute the Cramér-Rao Lower Bound for $\operatorname{Var}(\bar{Y})$.
14. (5880*) Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are iid $\operatorname{Bernoulli}(p)$ random variables. Show that $\hat{p}=\bar{Y}$ is an efficient estimator of p.

