Homework 9

Due Tuesday, April 9

1. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a Poisson distribution with parameter θ. Find the method of moments estimator for θ.
2. Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n} \sim$ iid $N\left(\mu, \sigma^{2}\right)$. Find the method of moments estimators for μ and σ^{2}.
3. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a distribution with pdf

$$
f_{Y}(y)=\theta k^{\theta} y^{-(\theta+1)}, \quad y>k, \theta>1
$$

Suppose that k is known. Find the method of moments estimator for θ.
4. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a Poisson distribution with parameter θ.
(a) Find the MLE of θ.
(b) Find the MLE of $P(Y=0)$.
5. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a gamma distribution with parameters α and β. Suppose that α is known.
(a) Find the MLE of β.
(b) Find the MLE of $E(Y)$.
6. Let Y_{1}, \ldots, Y_{n} be iid random variables, each with pdf

$$
f_{Y}(y)=\theta^{2} y e^{-\theta y}, \quad y>0
$$

Find the MLE of θ.
7. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a pdf

$$
f_{Y}(y)=\frac{r y^{r-1}}{\theta} e^{-y^{r} / \theta}, \quad y>0
$$

where $\theta>0$ is the parameter and r is known.
(a) Find a sufficient statistic of θ.
(b) Find the MLE of θ.
8. Let Y_{1}, \ldots, Y_{n} be iid random variables, each with pdf

$$
f_{Y}(y)=\frac{\theta}{y^{2}}, \quad \theta \leq y<\infty
$$

Find (1) sufficient statistic, (2) MLE, and (3) method of moment estimator of θ.
9. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a pdf

$$
f_{Y}(y)=\frac{2 \theta^{2}}{y^{3}}, \quad \theta \leq y<\infty
$$

Find the MLE of θ^{2}.
10. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a pdf

$$
f_{Y}(y)=\frac{3 y^{2}}{\theta^{3}}, \quad 0 \leq y \leq \theta
$$

Find the MLE of θ.
(The following two problems require the calculation of $Z_{M L E}$, defined as

$$
Z_{M L E}=\frac{t(\hat{\theta})-t(\theta)}{\sqrt{\left[\frac{\partial t(\theta)}{\partial \theta}\right]^{2} / I(\theta)}}
$$

where $I(\theta)$ is the Fisher information; see Section 9.8 of WMS).
11. (5880*) Let Y_{1}, \ldots, Y_{n} denote a random sample from an exponential distribution with parameter θ. Find $Z_{M L E}$ for (a) $t(\theta)=\theta$ and (b) $t(\theta)=\theta^{2}$.
12. (5880*) Let Y_{1}, \ldots, Y_{n} denote a random sample from a Poisson distribution with parameter λ. Find $Z_{M L E}$ for $t(\lambda)=P(Y=0)$.

